Hakim Arsany, Zubak Irena, Marx Christina, Rhomberg Thomas, Maragkou Theoni, Slotboom Johannes, Murek Michael
University Institute of Diagnostic and Interventional Neuroradiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland.
Department of Neurosurgery, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland.
Eur J Radiol. 2025 Mar;184:111957. doi: 10.1016/j.ejrad.2025.111957. Epub 2025 Jan 29.
To convert 1D spectra into 2D images using the Gramian angular field, to be used as input for convolutional neural network for classification tasks such as glioblastoma versus lymphoma.
Retrospective study including patients with histologically confirmed glioblastoma and lymphoma between 2009-2020 who underwent preoperative MR spectroscopy, using single voxel spectroscopy acquired with a short echo time (TE 30). We compared: 1) the Fourier-transformed raw spectra, and 2) the fitted spectra generated during post-processing. Both spectra were independently converted into images using the Gramian angular field, and then served as inputs for a pretrained neural network. We compared the classification performance using data from the Fourier-transformed raw spectra and the post-processed fitted spectra.
This feasibility study included 98 patients, of whom 65 were diagnosed with glioblastomas and 33 with lymphomas. For algorithm testing, 20 % of the cases (19 in total) were randomly selected. By applying the Gramian angular field technique to the Fourier-transformed spectra, we achieved an accuracy of 73.7 % and a sensitivity of 92 % in classifying glioblastoma versus lymphoma, slightly higher than the fitted spectra pathway.
Spectroscopy data can be effectively transformed into distinct color graphical images using the Gramian angular field technique, enabling their use as input for deep learning algorithms. Accuracy tends to be higher when utilizing data derived from Fourier-transformed spectra compared to fitted spectra. This finding underscores the potential of using MR spectroscopy data in neural network-based classification purposes.
使用格拉姆角场将一维光谱转换为二维图像,用作卷积神经网络在胶质母细胞瘤与淋巴瘤等分类任务中的输入。
回顾性研究纳入了2009年至2020年间组织学确诊为胶质母细胞瘤和淋巴瘤且接受术前磁共振波谱检查的患者,采用短回波时间(TE 30)采集的单体素波谱。我们比较了:1)傅里叶变换后的原始波谱,以及2)后处理过程中生成的拟合波谱。两种波谱均使用格拉姆角场独立转换为图像,然后用作预训练神经网络的输入。我们使用傅里叶变换后的原始波谱和后处理后的拟合波谱数据比较了分类性能。
这项可行性研究纳入了98例患者,其中65例被诊断为胶质母细胞瘤,33例被诊断为淋巴瘤。为进行算法测试,随机选择了20%的病例(共19例)。通过将格拉姆角场技术应用于傅里叶变换后的波谱,我们在胶质母细胞瘤与淋巴瘤的分类中达到了73.7%的准确率和92%的灵敏度,略高于拟合波谱途径。
使用格拉姆角场技术可将波谱数据有效地转换为独特的彩色图形图像,使其能够用作深度学习算法的输入。与拟合波谱相比,利用傅里叶变换后的波谱数据时准确率往往更高。这一发现凸显了在基于神经网络的分类目的中使用磁共振波谱数据的潜力。