Suppr超能文献

脑肿瘤定量动态对比增强磁共振成像中的大血管分割:一种基于Swin UNETR的方法。

Large blood vessel segmentation in quantitative DCE-MRI of brain tumors: A Swin UNETR approach.

作者信息

Kesari Anshika, Maurya Satyajit, Sheikh Mohammad Tufail, Gupta Rakesh Kumar, Singh Anup

机构信息

Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.

Department of Radiology, Fortis Memorial Research Institute, Gurugram, India.

出版信息

Magn Reson Imaging. 2025 May;118:110342. doi: 10.1016/j.mri.2025.110342. Epub 2025 Jan 31.

Abstract

Brain tumor growth is associated with angiogenesis, wherein the density of newly developed blood vessels indicates tumor progression and correlates with the tumor grade. Quantitative dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) has shown potential in brain tumor grading and treatment response assessment. Segmentation of large-blood-vessels is crucial for automatic and accurate tumor grading using quantitative DCE-MRI. Traditional manual and semi-manual rule-based large-blood-vessel segmentation methods are time-intensive and prone to errors. This study proposes a novel deep learning-based technique for automatic large-blood-vessel segmentation using Swin UNETR architectures and comparing it with U-Net and Attention U-Net architectures. The study employed MRI data from 187 brain tumor patients, with training, validation, and testing datasets sourced from two centers, two vendors, and two field-strength magnetic resonance scanners. To test the generalizability of the developed model, testing was also carried out on different brain tumor types, including lymphoma and metastasis. Performance evaluation demonstrated that Swin UNETR outperformed other models in segmenting large-blood-vessel regions (achieving Dice scores of 0.979, and 0.973 on training and validation sets, respectively, with test set performance ranging from 0.835 to 0.982). Moreover, most quantitative parameters showed significant differences (p < 0.05) between with and without large-blood-vessel. After large-blood-vessel removal, using both ground truth and predicted masks, the values of parameters in non-vascular tumoral regions were statistically similar (p > 0.05). The proposed approach has potential applications in improving the accuracy of automatic grading of tumors as well as in treatment planning.

摘要

脑肿瘤生长与血管生成有关,其中新生成血管的密度表明肿瘤进展,并与肿瘤分级相关。定量动态对比增强磁共振成像(DCE-MRI)在脑肿瘤分级和治疗反应评估中显示出潜力。大血管分割对于使用定量DCE-MRI进行自动准确的肿瘤分级至关重要。传统的基于手动和半自动规则的大血管分割方法耗时且容易出错。本研究提出了一种基于深度学习的新技术,用于使用Swin UNETR架构自动分割大血管,并将其与U-Net和注意力U-Net架构进行比较。该研究使用了来自187名脑肿瘤患者的MRI数据,训练、验证和测试数据集来自两个中心、两个供应商和两台场强磁共振扫描仪。为了测试所开发模型的通用性,还对不同类型的脑肿瘤(包括淋巴瘤和转移瘤)进行了测试。性能评估表明,Swin UNETR在分割大血管区域方面优于其他模型(训练集和验证集的Dice分数分别达到0.979和0.973,测试集性能范围为0.835至0.982)。此外,大多数定量参数在有和没有大血管的情况下显示出显著差异(p < 0.05)。在去除大血管后,使用真实值和预测掩码,非血管肿瘤区域的参数值在统计学上相似(p > 0.05)。所提出的方法在提高肿瘤自动分级的准确性以及治疗规划方面具有潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验