Chen Jie, Jakob Fähndrich Martin Othmar, Voliotis Aristeidis, Wu Huihui, Syafira Sara Aisyah, Oghama Osayomwanbor, Shardt Nadia, Fauré Nicolas, Kong Xiangrui, Mcfiggans Gordon, Kanji Zamin A
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich 8092, Switzerland.
Centre for Atmospheric Science, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester M13 9PL, U.K.
Environ Sci Technol. 2025 Feb 11;59(5):2575-2586. doi: 10.1021/acs.est.4c04941. Epub 2025 Feb 2.
Biomass burning aerosol (BBA) contributes significantly to the global aerosol burden, yet its chemical nature and ice nucleation activities (INAs) are unconstrained due to the heterogeneity in biomass sources and complex evolution of atmospheric aging processes. This study comprehensively investigates the chemical composition and INA of BBA generated through laboratory-controlled burns with different biomasses and burning conditions. Both freshly emitted and photochemically aged BBA produced from different processes exhibit distinct and reproducible chemical compositions. However, the INA of BBA shows substantial variability at mixed-phase cloud temperatures and cannot be predicted by the chemical variability of the enriched carbonaceous materials. This indicates the negligible role of carbonaceous materials in determining the INA of BBA. Using laboratory data, we further evaluate the impact of BBA on atmospheric ice nucleation using particulate matter mass concentration and particle equivalent spherical radius. The estimated ice nucleating particle (INP) concentrations contributed by laboratory-produced BBA are lower than those observed during BBA pollution in field studies. This discrepancy is likely attributed to co-lofted mineral particles during real-world biomass burning, such as ash or soil particles, rather than carbonaceous-rich particles from combustion. We encourage further research to quantify the contribution of mineral particles to the INP concentrations of BBA.
生物质燃烧气溶胶(BBA)对全球气溶胶负荷有重大贡献,然而,由于生物质来源的异质性和大气老化过程的复杂演变,其化学性质和冰核活性(INA)尚未得到明确界定。本研究全面调查了通过在实验室控制条件下燃烧不同生物质并采用不同燃烧条件所产生的BBA的化学成分和INA。不同过程产生的新排放和光化学老化的BBA均呈现出独特且可重复的化学成分。然而,BBA的INA在混合相云温度下表现出显著的变异性,并且无法通过富集碳质材料的化学变异性来预测。这表明碳质材料在决定BBA的INA方面作用可忽略不计。利用实验室数据,我们进一步使用颗粒物质量浓度和颗粒等效球形半径评估了BBA对大气冰核形成的影响。实验室产生的BBA贡献的估计冰核粒子(INP)浓度低于实地研究中BBA污染期间观测到的浓度。这种差异可能归因于实际生物质燃烧过程中共同上升的矿物颗粒,如灰分或土壤颗粒,而非来自燃烧的富含碳质的颗粒。我们鼓励进一步开展研究,以量化矿物颗粒对BBA的INP浓度的贡献。