Suppr超能文献

血液转录组学确定FEZ1为炎症性肠病的潜在生物标志物。

Blood transcriptomics identifies FEZ1 as a potential biomarker for inflammatory bowel disease.

作者信息

Mokaram Doust Delkhah Arman

机构信息

Independent Researcher, Mashhad, Iran.

出版信息

Comput Biol Med. 2025 Mar;187:109742. doi: 10.1016/j.compbiomed.2025.109742. Epub 2025 Feb 1.

Abstract

INTRODUCTION

While the global burden of inflammatory bowel diseases (IBD) is increasing, the identification of novel therapeutic targets and biomarkers is of significant importance. In particular, blood transcriptomes provide a non-invasive source for biomarker discovery. Therefore, this study aimed to identify potential blood markers for IBD.

METHODS

By employing an integrated transcriptomics approach, four datasets obtained from blood specimens of patients with IBD were analyzed (GSE119600, GSE94648, GSE86434, and GSE71730). After determining differentially expressed genes (DEGs) in IBD, a protein-protein interaction (PPI) network was constructed, and regulatory miRNAs targeting hub genes were identified. Weighted gene co-expression network analysis (WGCNA) was carried out to determine IBD-specific modules. Subsequently, converging results from differential expression analysis and WGCNA were subjected to random forest (RF) decision tree-based and LASSO regression methods. Lastly, the diagnostic efficacy of genes highlighted by both machine learning methods was measured using receiver operating characteristic (ROC) analysis in the integrated dataset, in each individual dataset separately, and in external datasets (GSE276395, GSE169568, GSE112057, GSE100833, GSE33943, and GSE3365).

RESULTS

Downregulated TNF was identified as the central hub gene of the PPI network, and PRF1 was the only gene identified as a hub gene in a co-expressed gene module enriched in IBD. Following the identification of FEZ1 and NLRC5 among the top 10 genes by both RF and LASSO, ROC analysis demonstrated their acceptable diagnostic efficacy in the integrated data. However, only FEZ1 was considered a potential biomarker based on replication of the results in the external datasets.

CONCLUSIONS

The results of the present study suggest FEZ1 as a potential blood biomarker for IBD. While autophagy is currently the most convincing explanation for the involvement of FEZ1 in IBD, further investigations are required to elucidate its immunological role.

摘要

引言

虽然炎症性肠病(IBD)的全球负担正在增加,但确定新的治疗靶点和生物标志物具有重要意义。特别是,血液转录组为生物标志物的发现提供了一种非侵入性来源。因此,本研究旨在确定IBD的潜在血液标志物。

方法

采用综合转录组学方法,分析了从IBD患者血液样本中获得的四个数据集(GSE119600、GSE94648、GSE86434和GSE71730)。在确定IBD中的差异表达基因(DEG)后,构建了蛋白质-蛋白质相互作用(PPI)网络,并鉴定了靶向枢纽基因的调控性miRNA。进行加权基因共表达网络分析(WGCNA)以确定IBD特异性模块。随后,将差异表达分析和WGCNA的收敛结果应用基于随机森林(RF)决策树和LASSO回归的方法。最后,在综合数据集中、在每个单独的数据集中以及在外部数据集(GSE276395、GSE169568、GSE112057、GSE100833、GSE33943和GSE3365)中,使用受试者工作特征(ROC)分析来测量两种机器学习方法突出显示的基因的诊断效能。

结果

下调的TNF被确定为PPI网络的中心枢纽基因,而PRF1是在富含IBD的共表达基因模块中被确定为枢纽基因的唯一基因。在RF和LASSO方法确定的前10个基因中鉴定出FEZ1和NLRC5后,ROC分析表明它们在综合数据中具有可接受的诊断效能。然而,基于外部数据集中结果的重复性,只有FEZ1被认为是一种潜在的生物标志物。

结论

本研究结果表明FEZ1是IBD的一种潜在血液生物标志物。虽然自噬目前是FEZ1参与IBD最有说服力的解释,但需要进一步研究以阐明其免疫作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验