识别炎症性肠病亚型:对转录组数据和基于机器学习方法的全面探索

Identifying inflammatory bowel disease subtypes: a comprehensive exploration of transcriptomic data and machine learning-based approaches.

作者信息

Saini Niyati, Acharjee Animesh

机构信息

Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK.

Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK.

出版信息

Therap Adv Gastroenterol. 2025 Aug 12;18:17562848251362391. doi: 10.1177/17562848251362391. eCollection 2025.

Abstract

BACKGROUND

Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous condition characterised by chronic gastrointestinal inflammation and dysregulated immune responses. Despite advances in transcriptomic analysis and machine learning (ML), consistent molecular subtyping across datasets remains a challenge. There is a critical need for robust subtypes that reflect disease heterogeneity and correlate with clinical outcomes.

OBJECTIVES

Unlike prior studies focused on either UC or CD or based on small datasets, this study analyses a large-scale RNA sequencing (RNA-seq) dataset to identify transcriptomic subtypes in both UC and CD.

DESIGN

We analysed RNA-seq data from four prospective cross-sectional cohorts from Gene Expression Omnibus: GSE193677, GSE186507, GSE137344 and GSE235236.

METHODS

Analysed RNA-sequenced data from inflamed and non-inflamed intestinal biopsies of 2490 adult IBD patients. -means clustering was applied independently to UC and CD samples to identify transcriptomic clusters. Gene set enrichment and network analyses explored molecular characteristics. Associations with clinical metadata, including disease severity and anatomical involvement, were assessed using Chi-square and analysis of variance tests.

RESULTS

-means clustering revealed three distinct transcriptomic subtypes in both UC and CD. In UC, Cluster 1 was enriched for RNA processing and DNA repair genes; Cluster 2 highlighted autophagy, stress responses and upregulation of and ; Cluster 3 emphasised cytoskeletal organisation ( and ). In CD, Cluster 1 featured cytoskeletal remodelling and suppressed protein synthesis ( and ), while Cluster 2 upregulated stress and translation pathways. Cluster 3 again prioritised cytoskeletal structure over metabolic activity. Cluster 3 in both conditions was significantly associated with moderate-to-severe endoscopic activity; Cluster 1 was enriched in inactive or mild disease.

CONCLUSION

We report three transcriptomic subtypes in UC and CD, each with distinct molecular signatures and clinical relevance. These findings support a stratified approach to IBD diagnosis and therapy, enabling more personalised disease management strategies.

摘要

背景

炎症性肠病(IBD)包括克罗恩病(CD)和溃疡性结肠炎(UC),是一种异质性疾病,其特征为慢性胃肠道炎症和免疫反应失调。尽管转录组分析和机器学习(ML)取得了进展,但跨数据集的一致分子亚型分类仍然是一项挑战。迫切需要能够反映疾病异质性并与临床结果相关的可靠亚型。

目的

与以往专注于UC或CD或基于小数据集的研究不同,本研究分析了一个大规模RNA测序(RNA-seq)数据集,以确定UC和CD中的转录组亚型。

设计

我们分析了来自基因表达综合数据库(Gene Expression Omnibus)中四个前瞻性横断面队列的RNA-seq数据:GSE193677、GSE186507、GSE137344和GSE235236。

方法

分析了2490例成年IBD患者炎症和非炎症肠道活检组织的RNA测序数据。对UC和CD样本分别独立应用K均值聚类以识别转录组簇。基因集富集和网络分析探索分子特征。使用卡方检验和方差分析评估与包括疾病严重程度和解剖学累及情况在内的临床元数据的关联。

结果

K均值聚类在UC和CD中均揭示了三种不同的转录组亚型。在UC中,簇1富含RNA加工和DNA修复基因;簇2突出了自噬、应激反应以及[具体基因1]和[具体基因2]的上调;簇3强调细胞骨架组织([具体基因3]和[具体基因4])。在CD中,簇1的特征是细胞骨架重塑和蛋白质合成受抑制([具体基因5]和[具体基因6]),而簇2上调了应激和翻译途径。簇3再次将细胞骨架结构置于代谢活性之上。两种情况下的簇3均与中度至重度内镜活动显著相关;簇1在非活动或轻度疾病中富集。

结论

我们报告了UC和CD中的三种转录组亚型,每种亚型都具有独特的分子特征和临床相关性。这些发现支持IBD诊断和治疗的分层方法,从而实现更个性化的疾病管理策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索