Paluch-Lubawa Ewelina, Popławska Kinga, Arasimowicz-Jelonek Magdalena, Sobieszczuk-Nowicka Ewa
Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań 61-614, Poland.
Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań 61-614, Poland.
Plant Sci. 2025 Apr;353:112408. doi: 10.1016/j.plantsci.2025.112408. Epub 2025 Jan 31.
Senescence is a crucial and highly active process in plants, optimising resource allocation and promoting phenotypic plasticity under restricted conditions. It involves global metabolic reprogramming for the organised disintegration and remobilization of resources. Polyamines (PAs) are polycationic biogenic amines prevalent in all eukaryotes and are necessary for cell survival. The commonly used PAs in plants include putrescine, spermidine, and spermine. Notably, the leaf's expression of S-adenosylmethionine decarboxylase and spermidine synthase gene family transcripts significantly changes during senescence. This suggests these genes are critical in spermidine metabolism and may condition metabolic reprogramming. One key role of spermidine in eukaryotes is to provide the 4-aminobutyl group for the posttranslational modification of lysine in eukaryotic translation factor 5A (eIF5A). This modification is catalysed by two sequential enzymatic steps leading to the activation of eIF5A by converting lysine to the unusual amino acid hypusine. Although eIF5A is well characterised to be involved in the translation of proline-rich repeat proteins and other hard-to-read motifs, the biological role of eIF5A has recently been clarified only in mammals. It could be better described at the plant functional level. The expression patterns of eIF5A isoforms and genes encoding machinery responsible for hypusination, differ between induced and developmental leaf senescence. In this paper, we summarise the existing knowledge on spermidine-dependent senescence control mechanisms in plants, raising the possibility that spermidine could be an element of a biological switch controlling the onset of a different type of senescence in an eIF5A-independent and dependent manner.
衰老在植物中是一个关键且高度活跃的过程,它能在受限条件下优化资源分配并促进表型可塑性。衰老涉及资源的有序分解和重新分配的全局代谢重编程。多胺(PAs)是普遍存在于所有真核生物中的聚阳离子生物胺,是细胞存活所必需的。植物中常用的多胺包括腐胺、亚精胺和精胺。值得注意的是,在衰老过程中,叶片中S -腺苷甲硫氨酸脱羧酶和亚精胺合酶基因家族转录本的表达会发生显著变化。这表明这些基因在亚精胺代谢中至关重要,可能决定着代谢重编程。亚精胺在真核生物中的一个关键作用是为真核翻译起始因子5A(eIF5A)中赖氨酸的翻译后修饰提供4 -氨基丁基基团。这种修饰由两个连续的酶促步骤催化,通过将赖氨酸转化为不寻常的氨基酸hypusine来激活eIF5A。尽管eIF5A在参与富含脯氨酸的重复蛋白和其他难读基序的翻译方面已有充分研究,但eIF5A的生物学作用最近才在哺乳动物中得以阐明。在植物功能层面上对其可能有更好的描述。诱导衰老和发育衰老的叶片中,eIF5A亚型以及负责hypusination的编码机制的基因的表达模式有所不同。在本文中,我们总结了植物中依赖亚精胺的衰老控制机制的现有知识,提出亚精胺可能是以不依赖eIF5A和依赖eIF5A的方式控制不同类型衰老起始的生物开关的一个组成部分的可能性。