Suppr超能文献

基于人口的电子商务地理推荐系统。

Geographic recommender systems in e-commerce based on population.

作者信息

Shili Mohamed, Sohaib Osama

机构信息

Innov'COM Laboratory, National Engineering School of Carthage, University of Carthage, Carthage, Tunisia.

School of Business, American University of Ras al Khaimah, Ras al Khaimah, United Arab Emirates.

出版信息

PeerJ Comput Sci. 2025 Jan 16;11:e2525. doi: 10.7717/peerj-cs.2525. eCollection 2025.

Abstract

Technological advancements have significantly enhanced e-commerce, helping customers find the best products. One key development is recommendation systems, which personalize the shopping experience and boost sales. This paper explores a novel geographic recommendation system that uses demographic data, such as population density, age, and income, to refine recommendations. By integrating geographic and demographic information, like the population size of a country, businesses can tailor their offerings to regional preferences. This targeted approach aims to make recommendations more relevant by considering the behaviors and needs of different geographic areas. We sourced population data from The National Institute of Statistics (Tunisia, INS). This approach improves the importance of product recommendations for particular locations by customizing them based on demographic and geographic measures. The technique creates a better context-aware recommendation system that boosts customer happiness and business proceeds by fusing consumer behavior with extensive demographic data. The method also includes a mathematical model that considers population intensity to refine further recommendations established on the regional model.

摘要

技术进步显著提升了电子商务水平,帮助客户找到最佳产品。一项关键发展是推荐系统,它能使购物体验个性化并促进销售。本文探讨了一种新颖的地理推荐系统,该系统利用人口密度、年龄和收入等人口统计数据来优化推荐。通过整合地理和人口统计信息,比如一个国家的人口规模,企业可以根据地区偏好来调整其产品供应。这种有针对性的方法旨在通过考虑不同地理区域的行为和需求,使推荐更具相关性。我们从突尼斯国家统计局(INS)获取了人口数据。这种方法通过基于人口统计和地理指标进行定制,提高了针对特定地点的产品推荐的重要性。该技术创建了一个更好的情境感知推荐系统,通过将消费者行为与广泛的人口统计数据相融合,提升了客户满意度和企业收益。该方法还包括一个数学模型,该模型考虑人口密度以进一步优化基于区域模型建立的推荐。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f6e/11784866/74e0ceb7d3e2/peerj-cs-11-2525-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验