Liang Mu, Jiao Mingqi, Feng Mingyang, Chen Pengbo, Gao Yang, Qiao Yingying, Li Lei, Shan Chongxin
International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
Photoacoustics. 2025 Jan 15;42:100688. doi: 10.1016/j.pacs.2025.100688. eCollection 2025 Apr.
Modulation technology is the necessary means for generating periodic acoustic waves in photoacoustic gas detection, primarily including intensity modulation and wavelength modulation. In multi-gas detection, when multiple lasers employ the same modulation technique, current technologies include time-division multiplexing (TDM) for measurements at different times and frequency-division multiplexing (FDM) for simultaneous measurements; when multiple lasers employ different modulation techniques, the only available technology is TDM with measurements conducted at different times, and whether simultaneous measurement can be achieved has not yet been verified. We propose, for the first time, a multi-gas photoacoustic sensor using multi-mode demodulation. This sensor employs multi-mode frequency division multiplexing (MMFDM) technology to separate and demodulate the multi-mode photoacoustic signal, thereby enabling the simultaneous measurement of multiple gases under different modulation techniques. To demonstrate the feasibility of this method, we used SO and HF, the SF decomposition products in gas-insulated switchgear (GIS), as target gases and simultaneously detected their mixture using different modulation modes. Experimental results show that when the frequency difference is 10 Hz, multi-mode photoacoustic signal can be successfully separated, with the minimum detection limits for SO and HF reaching 117.9 ppb and 65.5 ppb, respectively. This study is the first to validate the separability of multi-mode photoacoustic signal and achieve multi-gas simultaneous measurement under multi-mode modulation, thereby eliminating the limitations of modulation mode in simultaneous photoacoustic multi-gas detection.
调制技术是光声气体检测中产生周期性声波的必要手段,主要包括强度调制和波长调制。在多气体检测中,当多个激光器采用相同的调制技术时,当前技术包括用于不同时间测量的时分复用(TDM)和用于同时测量的频分复用(FDM);当多个激光器采用不同的调制技术时,唯一可用的技术是在不同时间进行测量的TDM,并且能否实现同时测量尚未得到验证。我们首次提出了一种采用多模解调的多气体光声传感器。该传感器采用多模频分复用(MMFDM)技术对多模光声信号进行分离和解调,从而能够在不同调制技术下同时测量多种气体。为了证明该方法的可行性,我们使用气体绝缘开关设备(GIS)中的SF分解产物SO和HF作为目标气体,并使用不同的调制模式同时检测它们的混合物。实验结果表明,当频率差为10 Hz时,多模光声信号能够成功分离,SO和HF的最低检测限分别达到117.9 ppb和65.5 ppb。本研究首次验证了多模光声信号的可分离性,并在多模调制下实现了多气体同时测量,从而消除了光声多气体同时检测中调制模式的限制。