Suppr超能文献

使用CNN-LSTM深度学习方法对朝圣者进行情感分析。

Sentiment analysis of pilgrims using CNN-LSTM deep learning approach.

作者信息

Alasmari Aisha, Farooqi Norah, Alotaibi Youseef

机构信息

College of Computer and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2024 Dec 23;10:e2584. doi: 10.7717/peerj-cs.2584. eCollection 2024.

Abstract

Crowd management refers to the management and control of masses at specific locations. A Hajj gathering is an example. Hajj is the biggest gathering of Muslims worldwide. Over two million Muslims from all over the globe come annually to Makkah, Saudi Arabia. Authorities of Saudi Arabia strive to provide comfortable comprehensive services to pilgrims using the latest modern technologies. Recent studies have focused on camera scenes and live streaming to assess the count and monitor the behavior of the crowd. However, the opinions of the pilgrims and their feelings about their experience of Hajj are not well known, and the data on social media (SM) is limited. This paper provides a combination of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) algorithms for sentiment analysis of pilgrims using a novel and specialized dataset, namely Catering-Hajj. The model is based on four CNN layers for local feature extraction after the One-Hot Encoder, and one LSTM layer to maintain long-term dependencies. The generated feature maps are passed to the SoftMax layer to classify final outputs. The proposed model is applied to a real case study of issues related to pre-prepared food at Hajj 1442. Started with collecting the dataset, extracting target attitudes, annotating the data correctly, and analyzing the positive, negative, and neutral attitudes of the pilgrims to this event. Our model is compared with a set of Machine Learning (ML) models including Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), and Random Forest (RF), as well as CNN and LSTM models. The experimental results show that SVM, RF, and LSTM achieve the same rate of roughly 81%. LR and CNN achieve 79%, and DT achieves 71%. The proposed model outperforms other classifiers on our dataset by 92%.

摘要

人群管理是指对特定地点的人群进行管理和控制。朝觐集会就是一个例子。朝觐是全球穆斯林最大规模的集会。每年有来自全球各地的两百多万穆斯林前往沙特阿拉伯的麦加。沙特当局努力利用最新的现代技术为朝圣者提供舒适的综合服务。最近的研究集中在摄像头场景和直播,以评估人数并监测人群行为。然而,朝圣者的意见以及他们对朝觐体验的感受并不为人所知,社交媒体(SM)上的数据也很有限。本文结合卷积神经网络(CNN)和长短期记忆(LSTM)算法,使用一个新颖且专门的数据集——餐饮朝觐,对朝圣者进行情感分析。该模型基于在独热编码器之后的四个用于局部特征提取的CNN层,以及一个用于维持长期依赖关系的LSTM层。生成的特征图被传递到SoftMax层以对最终输出进行分类。所提出的模型应用于1442年朝觐期间与预先准备的食物相关问题的实际案例研究。从收集数据集、提取目标态度、正确标注数据,到分析朝圣者对该事件的积极、消极和中性态度。我们的模型与一组机器学习(ML)模型进行了比较,包括支持向量机(SVM)、逻辑回归(LR)、决策树(DT)和随机森林(RF),以及CNN和LSTM模型。实验结果表明,SVM、RF和LSTM的准确率大致相同,约为81%。LR和CNN的准确率为79%,DT的准确率为71%。所提出的模型在我们的数据集中比其他分类器的表现高出92%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c237/11784790/63125642364a/peerj-cs-10-2584-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验