Gao Gan, Wang Yuanyuan, Zhou Feng, Chen Shuaiting, Ge Xiaole, Wang Rugang
School of Information Technology, Yancheng Institute of Technology, Yancheng, JiangSu, China.
PeerJ Comput Sci. 2024 Dec 10;10:e2494. doi: 10.7717/peerj-cs.2494. eCollection 2024.
Salient object detection aims to identify the most prominent objects within an image. With the advent of fully convolutional networks (FCNs), deep learning-based saliency detection models have increasingly leveraged FCNs for pixel-level saliency prediction. However, many existing algorithms face challenges in accurately delineating target boundaries, primarily due to insufficient utilization of edge information. To address this issue, we propose a novel approach to improve the boundary accuracy of salient target detection by integrating salient target and edge information. Our approach comprises two key components: a Self-attentive Group Pixel Fusion module (SGPFM) and a Bidirectional Feature Fusion module (BFF). The SGPFM extracts salient edge features from the lower layers of ResNet50 and salient target features from the higher layers. These features are then optimized using a self-attentive mechanism. The BFF module progressively fuses the salient target and edge features, optimizing them based on their logical relationships and enhancing the complementarities among the features. By combining detailed edge information and positional target information, our method significantly enhances the detection accuracy of target boundaries. Experimental results demonstrate that the proposed model outperforms the latest existing methods across four benchmark datasets, providing accurate and detail-rich salient target predictions. This advancement marks a significant contribution to the development of the field.
显著目标检测旨在识别图像中最突出的目标。随着全卷积网络(FCN)的出现,基于深度学习的显著性检测模型越来越多地利用FCN进行像素级显著性预测。然而,许多现有算法在准确描绘目标边界方面面临挑战,主要原因是边缘信息利用不足。为了解决这个问题,我们提出了一种通过整合显著目标和边缘信息来提高显著目标检测边界精度的新方法。我们的方法包括两个关键组件:自注意力分组像素融合模块(SGPFM)和双向特征融合模块(BFF)。SGPFM从ResNet50的下层提取显著边缘特征,从上层提取显著目标特征。然后使用自注意力机制对这些特征进行优化。BFF模块逐步融合显著目标和边缘特征,根据它们的逻辑关系对其进行优化,并增强特征之间的互补性。通过结合详细的边缘信息和位置目标信息,我们的方法显著提高了目标边界的检测精度。实验结果表明,所提出的模型在四个基准数据集上优于现有的最新方法,提供了准确且细节丰富的显著目标预测。这一进展标志着对该领域发展的重大贡献。