Ebot-Ojong Felicia, Ferraro Aileen R, Kaddar Farh, Hull-Crew Clayton, Scadden Ashley W, Klocko Andrew D, Lewis Zachary A
Department of Microbiology, University of Georgia, Athens, GA, 30602 USA.
Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
bioRxiv. 2025 Jan 21:2025.01.17.633486. doi: 10.1101/2025.01.17.633486.
Polycomb group (PcG) proteins form chromatin modifying complexes that stably repress lineage- or context-specific genes in animals, plants, and some fungi. Polycomb Repressive Complex 2 (PRC2) catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3) to assemble repressive chromatin. In the model fungus , H3K27me3 deposition is controlled by the H3K36 methyltransferase ASH1 and components of constitutive heterochromatin including the H3K9me3-binding protein HETEROCHROMATIN PROTEIN 1 (HP1). Hypoacetylated histones are a defining feature of both constitutive heterochromatin and PcG-repressed chromatin, but how histone deacetylases (HDACs) contribute to normal H3K27me3 and transcriptional repression within PcG-repressed chromatin is poorly understood. We performed a genetic screen to identify HDACs required for repression of PRC2-methylated genes. In the absence of HISTONE DEACETYLASE-1 (HDA-1), PRC2-methylated genes were activated and H3K27me3 was depleted from typical PRC2-targeted regions. At constitutive heterochromatin, HDA-1 deficient cells displayed reduced H3K9me3, hyperacetylation, and aberrant enrichment of H3K27me3 and H3K36me3. CHROMODOMAIN PROTEIN-2 (CDP-2) is required to target HDA-1 to constitutive heterochromatin and was also required for normal H3K27me3 patterns. Patterns of aberrant H3K27me3 were distinct in isogenic Δ- strains, suggesting that loss of HDA-1 causes stochastic or progressive epigenome dysfunction. To test this, we constructed a new Δ- strain and performed a laboratory evolution experiment. Deletion of - led to progressive epigenome decay over hundreds of nuclear divisions. Together, our data indicate that HDA-1 is a critical regulator of epigenome stability in .
多梳蛋白组(PcG)蛋白形成染色质修饰复合物,可在动物、植物和一些真菌中稳定抑制谱系或特定环境相关的基因。多梳抑制复合物2(PRC2)催化组蛋白H3上赖氨酸27的三甲基化(H3K27me3)以组装抑制性染色质。在模式真菌中,H3K27me3的沉积由H3K36甲基转移酶ASH1和组成型异染色质的组分控制,包括H3K9me3结合蛋白异染色质蛋白1(HP1)。低乙酰化组蛋白是组成型异染色质和PcG抑制染色质的一个决定性特征,但组蛋白脱乙酰酶(HDACs)如何促进正常的H3K27me3以及PcG抑制染色质内的转录抑制仍知之甚少。我们进行了一项遗传筛选,以鉴定抑制PRC2甲基化基因所需的HDACs。在缺乏组蛋白脱乙酰酶-1(HDA-1)的情况下,PRC2甲基化基因被激活,并且H3K27me3从典型的PRC2靶向区域中耗尽。在组成型异染色质处,HDA-1缺陷细胞显示H3K9me3减少、高乙酰化以及H3K27me3和H3K36me3的异常富集。染色质结构域蛋白-2(CDP-2)是将HDA-1靶向组成型异染色质所必需的,也是正常H3K27me3模式所必需的。异常的H3K27me3模式在同基因的Δ-菌株中是不同的,这表明HDA-1的缺失会导致随机或渐进的表观基因组功能障碍。为了验证这一点,我们构建了一个新的Δ-菌株并进行了一项实验室进化实验。缺失-导致在数百次核分裂过程中表观基因组逐渐衰退。总之,我们的数据表明HDA-1是真菌中表观基因组稳定性的关键调节因子。