Romanowicz Karl J, Resnick Carmen, Hinton Samuel R, Plesa Calin
Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR 97403, USA.
bioRxiv. 2025 Jan 24:2025.01.23.634126. doi: 10.1101/2025.01.23.634126.
Current antibiotic resistance studies often focus on individual protein variants, neglecting broader protein family dynamics. Dihydrofolate reductase (DHFR), a key antibiotic target, has been extensively studied using deep mutational scanning, yet resistance mechanisms across this diverse protein family remain poorly understood. Using DropSynth, a scalable gene synthesis platform, we designed a library of 1,536 synthetic DHFR homologs representing 778 species of bacteria, archaea, and viruses, including clinically relevant pathogens. A multiplexed assay tested their ability to restore metabolic function and confer trimethoprim resistance in an strain. Over half of the synthetic homologs rescued the phenotype without supplementation, and mutants with up to five amino acid substitutions increased the rescue rate to 90%, highlighting DHFR's evolutionary resilience. Broad Mutational Scanning (BMS) of homologs and 100,000 mutants provided critical insights into DHFR's fitness landscape and resistance pathways, representing the most extensive analysis of homolog complementation and inhibitor tolerance to date and advancing our understanding of antibiotic resistance mechanisms.
当前的抗生素耐药性研究通常聚焦于单个蛋白质变体,而忽略了更广泛的蛋白质家族动态。二氢叶酸还原酶(DHFR)是一个关键的抗生素靶点,已经通过深度突变扫描进行了广泛研究,但这个多样化蛋白质家族的耐药机制仍知之甚少。我们使用可扩展的基因合成平台DropSynth,设计了一个包含1536个合成DHFR同源物的文库,这些同源物代表了778种细菌、古菌和病毒,包括临床相关病原体。一种多重检测方法测试了它们在一种菌株中恢复代谢功能并赋予甲氧苄啶耐药性的能力。超过一半的合成同源物在不添加补充剂的情况下挽救了表型,具有多达五个氨基酸取代的突变体将挽救率提高到了90%,突出了DHFR的进化弹性。对同源物和10万个突变体的广泛突变扫描(BMS)为DHFR的适应性景观和耐药途径提供了关键见解,这是迄今为止对同源物互补和抑制剂耐受性最广泛的分析,并推动了我们对抗生素耐药机制的理解。