Liu Shuainan, Xie Mingjun, Lu Wende, Zhang Xinyue, Du Mengyin, Yao Yao, Yuan Jianyu, Li Guang
College of Forestry Gansu Agricultural University Lanzhou China.
College of Grasslands Gansu Agricultural University Lanzhou China.
Ecol Evol. 2025 Jan 30;15(2):e70875. doi: 10.1002/ece3.70875. eCollection 2025 Feb.
Progressively higher atmospheric nitrogen (N) deposition increasingly affects soil ecosystems' elemental cycling and stability. Biochar (BC) amendment has emerged as a possible means of preserving soil system stability. Nevertheless, the pattern of soil-microbial nutrient cycling and system stability in response to BC after high N deposition in ecologically sensitive regions remains uncertain. Therefore, we investigated the effects of high N (9 g N·m·a), BC (0, 20, 40 t·ha), and combinations of the treatments on soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), microbial biomass carbon (MBC), nitrogen (MBN), phosphorus (MBP), microbial entropy ( ), and stoichiometric imbalance (C:N:P). We found that high N addition decreased topsoil (0-20 cm) TP, C:N, , and C:N values and increased TN, C:P, N:P, , C:P, and N:P values. However, BC addition increased 0-40 cm soil and N:P values and decreased , C:N, and C:P values. Meanwhile, high BC additions attenuated BC's promotion of soil-microbial nutrients. We observed that a mixture of high N and BC increased the 0-40 cm SOC and TP content, promoted the accumulation of MBN and MBP in the subsoil (20-40 cm), and decreased the topsoil C:P and N:P values compared to high N additions. The impact of high N and BC additions on N and P elements varied significantly between the different soil depths. In addition, redundancy analysis identified C:N, MBC, MBN, and C:P as pivotal factors affecting alterations in soil and stoichiometric imbalance. Overall, adding BC reduced the negative impacts of high N deposition on the stability of soil-microbial systems in the Loess Plateau, suggesting a new approach for managing ecologically fragile areas.
大气氮(N)沉降的不断增加日益影响土壤生态系统的元素循环和稳定性。生物炭(BC)改良已成为维持土壤系统稳定性的一种可能手段。然而,在生态敏感地区高氮沉降后,土壤-微生物养分循环模式和系统稳定性对生物炭的响应仍不明确。因此,我们研究了高氮(9 g N·m·a)、生物炭(0、20、40 t·ha)及其组合处理对土壤有机碳(SOC)、全氮(TN)、全磷(TP)、微生物生物量碳(MBC)、氮(MBN)、磷(MBP)、微生物熵( )和化学计量失衡(C:N:P)的影响。我们发现,添加高氮降低了表层土壤(0-20 cm)的TP、C:N、 和C:N值,增加了TN、C:P、N:P、 、C:P和N:P值。然而,添加生物炭增加了0-40 cm土壤的 和N:P值,降低了 、C:N和C:P值。同时,高剂量生物炭添加减弱了生物炭对土壤-微生物养分的促进作用。我们观察到,与高氮添加相比,高氮和生物炭的混合物增加了0-40 cm的SOC和TP含量,促进了亚表层土壤(20-40 cm)中MBN和MBP的积累,并降低了表层土壤的C:P和N:P值。高氮和生物炭添加对氮和磷元素的影响在不同土壤深度之间存在显著差异。此外,冗余分析确定C:N、MBC、MBN和C:P是影响土壤 和化学计量失衡变化的关键因素。总体而言,添加生物炭降低了高氮沉降对黄土高原土壤-微生物系统稳定性的负面影响,为生态脆弱地区的管理提供了一种新方法。