Coleman Emmet, Kelly Adam, Gabbett Cian, Doolan Luke, Liu Shixin, Yadav Neelam, Vij Jagdish K, Coleman Jonathan N
School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin D02 PN40, Ireland.
Department of Electronic & Electrical Engineering, Trinity College Dublin, Dublin D02 PN40, Ireland.
ACS Appl Electron Mater. 2025 Jan 9;7(2):806-815. doi: 10.1021/acsaelm.4c01965. eCollection 2025 Jan 28.
Printed networks of nanoparticles (e.g., nanodots, nanowires, nanosheets) are important for a range of electronic, sensing and energy storage applications. Characterizing the temperature dependence of both the nanoparticle resistivity (ρ) and interparticle junction resistance ( ) in such networks is crucial for understanding the conduction mechanism and so for optimizing network properties. However, it is challenging to extract both ρ and from standard electrical measurements. Here, using silver nanowires (AgNWs) as a model system, we describe a broadly applicable method to extract both parameters from resistivity measurements on nanowire networks. We achieve this by combining a simple theoretical model with temperature-dependent resistivity measurements on sets of networks fabricated from nanowires of different lengths. As expected, our results demonstrate that is the predominant bottleneck for charge transport within these networks, with / in the range 0.03-0.7. We demonstrate that the temperature dependence of ρ exhibits characteristic Bloch-Grüneisen behavior, yielding a Debye temperature between 133-181 K, which aligns with reported values for individual nanowires. Likewise, our findings for residual resistivity and electron-phonon coupling constants closely match published values measured on individual nanowires. The junction resistance also follows Bloch-Grüneisen behavior with similar parameters, indicating the junctions consist of metallic silver. These findings confirm the validity of our method and provide a deeper insight into the conduction mechanisms in AgNW networks. They also pave the way toward simultaneous measurement of ρ and in other important systems, notably carbon nanotube networks.
纳米颗粒(如纳米点、纳米线、纳米片)的印刷网络对于一系列电子、传感和能量存储应用都很重要。表征此类网络中纳米颗粒电阻率(ρ)和颗粒间结电阻( )的温度依赖性对于理解传导机制以及优化网络性能至关重要。然而,从标准电学测量中提取ρ和 都具有挑战性。在这里,我们以银纳米线(AgNWs)为模型系统,描述了一种广泛适用的方法,可从纳米线网络的电阻率测量中提取这两个参数。我们通过将一个简单的理论模型与对由不同长度纳米线制成的网络组进行的温度依赖性电阻率测量相结合来实现这一点。正如预期的那样,我们的结果表明 是这些网络中电荷传输的主要瓶颈, / 在0.03 - 0.7范围内。我们证明ρ的温度依赖性呈现出特征性的布洛赫 - 格律恩森行为,得出德拜温度在133 - 181 K之间,这与报道的单个纳米线的值一致。同样,我们关于剩余电阻率和电子 - 声子耦合常数的发现与在单个纳米线上测量的已发表值密切匹配。结电阻也遵循具有相似参数的布洛赫 - 格律恩森行为,表明结由金属银组成。这些发现证实了我们方法的有效性,并为深入了解AgNW网络中的传导机制提供了依据。它们还为在其他重要系统(尤其是碳纳米管网络)中同时测量ρ和 铺平了道路。