Suppr超能文献

枪乌贼巨大轴突在射频下的导纳及其与膜结构的关系。

The admittance of the squid giant axon at radio frequencies and its relation to membrane structure.

作者信息

Haydon D A, Urban B W

出版信息

J Physiol. 1985 Mar;360:275-91. doi: 10.1113/jphysiol.1985.sp015617.

Abstract

The admittance of the squid giant axon membrane has been measured, using an intracellular electrode, at frequencies up to 40 MHz. The existence of a radio frequency dispersion, previously detected with extracellular electrodes (Cole, 1976) and attributed to the Schwann cell layer, has been confirmed and followed to higher frequencies. For a comparable method of analysis, membrane parameters similar to those given by Cole (1976) have been calculated. The radio frequency dispersion has a centre frequency at approximately 1.8 MHz, and the properties of a parallel combination of a 28 nF cm-2 capacity and a 3.3 omega cm2 resistance. When the axon membrane capacity is calculated, taking into account the radio frequency dispersion, as described above, the capacity remains frequency dependent throughout the range studied. If it is assumed that at high frequencies the axolemma capacity becomes constant at approximately the value for a lipid bilayer, a radio frequency dispersion is found which cannot be accounted for in terms of a simple equivalent circuit with two passive components, but appears to arise from a network with a distribution of relaxation times. This result could be consistent with the morphology of the Schwann cell layer. The radio frequency dispersion referred to in (4) can be described reasonably well by a circuit with two dispersions having centre frequencies of 250 kHz and 3.2 MHz respectively. The corresponding axolemma capacity (100-500 kHz) would be approximately 0.6 microF cm-2. It is argued that between 50 and 100 kHz the geometrical capacity arising from the non-polar regions of the membrane is a major contributor to the axon membrane capacity, and that capacity variations arising from compositional changes in the lipid bilayer are best monitored in this frequency range.

摘要

利用细胞内电极,在高达40兆赫兹的频率下测量了鱿鱼巨轴突膜的导纳。先前用细胞外电极检测到的、归因于施万细胞层的射频色散现象已得到证实,并在更高频率下进行了跟踪研究。对于一种类似的分析方法,已计算出与科尔(1976年)给出的膜参数相似的参数。射频色散的中心频率约为1.8兆赫兹,具有28纳法/平方厘米的电容和3.3欧姆/平方厘米的电阻并联组合的特性。当按照上述方法考虑射频色散来计算轴突膜电容时,在所研究的整个频率范围内,电容仍然与频率相关。如果假设在高频时轴膜电容近似恒定在脂质双分子层的值,就会发现一种射频色散,它不能用具有两个无源元件的简单等效电路来解释,而似乎是由具有弛豫时间分布的网络引起的。这一结果可能与施万细胞层的形态一致。(4)中提到的射频色散可以用一个具有两个色散的电路相当好地描述,这两个色散的中心频率分别为250千赫兹和3.2兆赫兹。相应的轴膜电容(100 - 500千赫兹)约为0.6微法/平方厘米。有人认为,在50至100千赫兹之间,由膜的非极性区域产生的几何电容是轴突膜电容的主要贡献者,并且在这个频率范围内最适合监测由脂质双分子层成分变化引起的电容变化。

相似文献

7
Electrical properties of the squid axon sheath.鱿鱼轴突膜的电学特性。
Biophys J. 1976 Feb;16(2 Pt 1):137-42. doi: 10.1016/s0006-3495(76)85670-6.
9
Optimization of the leak conductance in the squid giant axon.鱿鱼巨大轴突中泄漏电导的优化
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021906. doi: 10.1103/PhysRevE.82.021906. Epub 2010 Aug 6.

引用本文的文献

3
Effects of frequency-dependent membrane capacitance on neural excitability.频率依赖性膜电容对神经兴奋性的影响。
J Neural Eng. 2015 Oct;12(5):056015-56015. doi: 10.1088/1741-2560/12/5/056015. Epub 2015 Sep 8.

本文引用的文献

2
The after-effects of impulses in the giant nerve fibres of Loligo.枪乌贼巨大神经纤维冲动的后效应
J Physiol. 1956 Feb 28;131(2):341-76. doi: 10.1113/jphysiol.1956.sp005467.
9
Anomalous dielectric dispersion in bimolecular lipid membranes.双分子脂质膜中的异常介电色散。
Biochim Biophys Acta. 1970 Mar 17;203(1):17-27. doi: 10.1016/0005-2736(70)90031-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验