Suppr超能文献

量化黄斑光学相干断层扫描血管造影图像中糖尿病视网膜病变的特征:少样本学习与可解释人工智能方法

Quantifying the Characteristics of Diabetic Retinopathy in Macular Optical Coherence Tomography Angiography Images: A Few-Shot Learning and Explainable Artificial Intelligence Approach.

作者信息

Movassagh Ali Akbar, Jajroudi Mahdie, Homayoun Jafari Amir, Khalili Pour Elias, Farrokhpour Hossein, Faghihi Hooshang, Riazi Hamid, ArabAlibeik Hossein

机构信息

Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, IRN.

Medical Informatics, Mashhad University of Medical Sciences, Mashhad, IRN.

出版信息

Cureus. 2025 Jan 1;17(1):e76746. doi: 10.7759/cureus.76746. eCollection 2025 Jan.

Abstract

BACKGROUND

Early detection and accurate staging of diabetic retinopathy (DR) are important to prevent vision loss. Optical coherence tomography angiography (OCTA) images provide detailed insights into the retinal vasculature, revealing intricate changes that occur as DR progresses. However, interpreting these complex images requires significant expertise and is often time-intensive. Deep learning techniques have the potential to automate DR analysis. However, they typically require large datasets for effective training. To address the challenge of limited data in this emerging imaging field, a combined approach using few-shot learning (FSL) and self-attention mechanisms within explainable AI (XAI) was explored.

OBJECTIVE

To investigate and evaluate the potential of an FSL-self-attention XAI approach to improve the accuracy of DR staging classification using OCTA images.

METHODS

A total of 206 OCTA images, comprising 104 non-proliferative diabetic retinopathy (NPDR) and 102 proliferative diabetic retinopathy (PDR) cases, were analyzed using the FSL method. Three pre-trained networks (ResNet-50, DenseNet-161, and MobileNet-v2) were employed, with the top-performing model subsequently integrated with the Match-Them-Up Network (MTUNet) to provide explainable interpretations using a self-attention mechanism. The performance of the models was evaluated by applying standard metrics, including accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC-ROC). The performance of the MTUNet model is assessed by calculating pattern-matching scores for PDR and NPDR classes.

RESULTS

The ResNet-50 pre-trained model in FSL demonstrated the best overall performance, achieving an accuracy of 76.17%, a sensitivity of 81.83%, a specificity of 70.5%, and 0.82 AUC in classifying DR stages. MTUNet provided pattern-matching scores of 0.77 and 0.75 for PDR and NPDR classes, respectively.

CONCLUSIONS

FSL and self-attention mechanisms in XAI offer promising approaches for accurate DR stage classification, especially in data-limited scenarios. This could potentially facilitate early DR detection and inform clinical decision-making.

摘要

背景

糖尿病视网膜病变(DR)的早期检测和准确分期对于预防视力丧失至关重要。光学相干断层扫描血管造影(OCTA)图像能提供有关视网膜血管系统的详细信息,揭示随着DR进展而发生的复杂变化。然而,解读这些复杂图像需要专业知识,且往往耗时较长。深度学习技术有实现DR分析自动化的潜力。然而,它们通常需要大量数据集才能进行有效训练。为应对这一新兴成像领域数据有限的挑战,探索了一种结合少样本学习(FSL)和可解释人工智能(XAI)中的自注意力机制的方法。

目的

研究和评估FSL-自注意力XAI方法使用OCTA图像提高DR分期分类准确性的潜力。

方法

使用FSL方法分析了总共206张OCTA图像,其中包括104例非增殖性糖尿病视网膜病变(NPDR)和102例增殖性糖尿病视网膜病变(PDR)病例。采用了三个预训练网络(ResNet-50、DenseNet-161和MobileNet-v2),随后将表现最佳的模型与匹配网络(MTUNet)集成,以使用自注意力机制提供可解释的解读。通过应用标准指标评估模型性能,包括准确率、灵敏度、特异性和受试者工作特征曲线下面积(AUC-ROC)。通过计算PDR和NPDR类别的模式匹配分数来评估MTUNet模型的性能。

结果

FSL中预训练的ResNet-50模型表现出最佳的整体性能,在DR分期分类中准确率达到76.17%,灵敏度为81.83%,特异性为70.5%,AUC为0.82。MTUNet为PDR和NPDR类别的模式匹配分数分别为0.77和0.75。

结论

XAI中的FSL和自注意力机制为准确的DR分期分类提供了有前景的方法,尤其是在数据有限的情况下。这可能有助于早期DR检测并为临床决策提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dcc/11785394/9b17bffc0429/cureus-0017-00000076746-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验