Suppr超能文献

了解临床研究中样本量的下限和上限。

Understanding the Lower and Upper Limits of Sample Sizes in Clinical Research.

作者信息

Hamad Abdullah A, Ahmed Sirwan K

机构信息

Faculty of Medicine, Menoufia University, Shibin El-Kom, EGY.

Medical Research Group of Egypt, Negida Academy, Arlingon, USA.

出版信息

Cureus. 2025 Jan 1;17(1):e76724. doi: 10.7759/cureus.76724. eCollection 2025 Jan.

Abstract

The determination of an appropriate sample size is pivotal in medical research, not only for achieving statistical adequacy but also for ensuring ethical integrity and resource efficiency. This editorial elucidates the complexities involved in defining the lower and upper limits of sample size across various research paradigms. The lower limit is essential for maintaining sufficient statistical power and precision, which depend on several factors, including the study's objectives, inherent population variability, and the desired accuracy of results. An insufficient sample size poses a risk of significant Type II errors and produces wide confidence intervals, thereby undermining the reliability and applicability of the research findings. Conversely, the upper limit encounters practical constraints related to resource allocation and ethical considerations, where the principle of diminishing returns becomes evident as sample sizes increase beyond a certain threshold. This scenario leads to minimal gains in precision at the cost of potential participant risk and resource overutilization. The editorial advocates for a methodical approach to sample size calculation, utilizing statistical tools such as sample size formulas, and G*Power and adopting innovative methodologies, including adaptive trial designs and Bayesian statistics. These strategies facilitate dynamic adjustments based on interim results and prior knowledge, respectively, promoting optimal resource utilization while preserving robust statistical power. Ultimately, the careful calibration of sample size enhances the validity and ethical integrity of medical research, thereby bolstering its contribution to scientific knowledge.

摘要

确定合适的样本量在医学研究中至关重要,这不仅关乎实现统计上的充分性,还涉及确保伦理完整性和资源利用效率。这篇社论阐明了在不同研究范式中界定样本量下限和上限所涉及的复杂性。下限对于维持足够的统计效能和精度至关重要,而这取决于多个因素,包括研究目标、总体固有的变异性以及结果所需的准确性。样本量不足会带来显著的II类错误风险,并产生较宽的置信区间,从而削弱研究结果的可靠性和适用性。相反,上限则面临与资源分配和伦理考量相关的实际限制,随着样本量增加超过一定阈值,收益递减原则变得明显。这种情况导致精度提升甚微,却以潜在的参与者风险和资源过度利用为代价。社论主张采用系统的方法来计算样本量,利用诸如样本量公式、G*Power等统计工具,并采用创新方法,包括适应性试验设计和贝叶斯统计。这些策略分别基于中期结果和先验知识促进动态调整,在保持强大统计效能的同时促进资源的优化利用。最终,对样本量的精心校准可提高医学研究的有效性和伦理完整性,从而增强其对科学知识的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0aa/11783334/f9608e062f47/cureus-0017-00000076724-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验