Yu Congcong, Sun Rongtai, Yang Wentao, Gu Tianyuan, Ying Xiaozhang, Ye Lin, Zheng Yang, Fan Shunwu, Zeng Xiangjun, Yao Shasha
Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China.
Theranostics. 2025 Jan 2;15(5):1741-1759. doi: 10.7150/thno.104186. eCollection 2025.
Physical exercise is essential for skeletal integrity and bone health. The gut microbiome, as a pivotal modulator of overall physiologic states, is closely associated with skeletal homeostasis and bone metabolism. However, the potential role of intestinal microbiota in the exercise-mediated bone gain remains unclear. We conducted microbiota depletion and fecal microbiota transplantation (FMT) in ovariectomy (OVX) mice and aged mice to investigate whether the transfer of gut ecological traits could confer the exercise-induced bone protective effects. The study analyzed the gut microbiota and metabolic profiles via 16S rRNA gene sequencing and LC-MS untargeted metabolomics to identify key microbial communities and metabolites responsible for bone protection. Transcriptome sequencing and RNA interference were employed to explore the molecular mechanisms. We found that gut microbiota depletion hindered the osteogenic benefits of exercise, and FMT from exercised osteoporotic mice effectively mitigated osteopenia. Comprehensive profiling of the microbiome and metabolome revealed that the exercise-matched FMT reshaped intestinal microecology and metabolic landscape. Notably, alterations in bile acid metabolism, specifically the enrichment of taurine and ursodeoxycholic acid, mediated the protective effects on bone mass. Mechanistically, FMT from exercised mice activated the apelin signaling pathway and restored the bone-fat balance in recipient MSCs. Our study underscored the important role of the microbiota-metabolic axis in the exercise-mediated bone gain, heralding a potential breakthrough in the treatment of osteoporosis.
体育锻炼对骨骼完整性和骨骼健康至关重要。肠道微生物群作为整体生理状态的关键调节因子,与骨骼稳态和骨代谢密切相关。然而,肠道微生物群在运动介导的骨质增加中的潜在作用仍不清楚。我们对去卵巢(OVX)小鼠和老年小鼠进行了微生物群耗竭和粪便微生物群移植(FMT),以研究肠道生态特征的转移是否能赋予运动诱导的骨骼保护作用。该研究通过16S rRNA基因测序和LC-MS非靶向代谢组学分析了肠道微生物群和代谢谱,以确定负责骨骼保护的关键微生物群落和代谢物。采用转录组测序和RNA干扰来探索分子机制。我们发现肠道微生物群耗竭阻碍了运动的成骨益处,而来自运动性骨质疏松小鼠的FMT有效地减轻了骨质减少。对微生物组和代谢组的综合分析表明,与运动匹配的FMT重塑了肠道微生态和代谢格局。值得注意的是,胆汁酸代谢的改变,特别是牛磺酸和熊去氧胆酸的富集,介导了对骨量的保护作用。从机制上讲,来自运动小鼠的FMT激活了apelin信号通路,并恢复了受体间充质干细胞中的骨-脂肪平衡。我们的研究强调了微生物群-代谢轴在运动介导的骨质增加中的重要作用,预示着骨质疏松症治疗的潜在突破。
J Orthop Surg Res. 2025-8-30
Gut Microbes. 2024
Nat Rev Rheumatol. 2024-7
Nat Metab. 2024-6
Acta Pharm Sin B. 2024-4