Suppr超能文献

使用无监督域自适应和生成对抗网络的跨不同头部撞击类型的自适应机器学习头部模型

Adaptive Machine Learning Head Model Across Different Head Impact Types Using Unsupervised Domain Adaptation and Generative Adversarial Networks.

作者信息

Zhan Xianghao, Sun Jiawei, Liu Yuzhe, Cecchi Nicholas J, Le Flao Enora, Gevaert Olivier, Zeineh Michael M, Camarillo David B

机构信息

Department of Bioengineering, Stanford University, CA, 94305, USA.

School of Biological Science and Medical Engineering, BeiHang University, Beijing, 10019, China.

出版信息

IEEE Sens J. 2024 Mar 1;24(5):7097-7106. doi: 10.1109/jsen.2023.3349213. Epub 2024 Jan 5.

Abstract

Machine learning head models (MLHMs) are developed to estimate brain deformation from sensor-based kinematics for early detection of traumatic brain injury (TBI). However, the overfitting to simulated impacts and the decreasing accuracy caused by distributional shift of different head impact datasets hinders the broad clinical applications of current MLHMs. We propose a new MLHM configuration that integrates unsupervised domain adaptation with a deep neural network to predict whole-brain maximum principal strain (MPS) and MPS rate (MPSR). With 12,780 simulated head impacts, we performed unsupervised domain adaptation on target head impacts from 302 college football (CF) impacts and 457 mixed martial arts (MMA) impacts using domain regularized component analysis (DRCA) and cycle-GAN-based methods. The new model improved the MPS/MPSR estimation accuracy, with the DRCA method outperforming other domain adaptation methods in prediction accuracy: MPS mean absolute error (MAE): 0.017 (CF) and 0.020 (MMA); MPSR MAE: 4.09 s (CF) and 6.61 s(MMA). On another two hold-out test sets with 195 college football impacts and 260 boxing impacts, the DRCA model outperformed the baseline model without domain adaptation in MPS and MPSR estimation MAE. The DRCA domain adaptation approach reduces the error of MPS/MPSR estimation to be well below previously reported TBI thresholds, enabling accurate brain deformation estimation to detect TBI in future clinical applications.

摘要

机器学习头部模型(MLHMs)旨在根据基于传感器的运动学来估计脑变形,以早期检测创伤性脑损伤(TBI)。然而,当前的MLHMs对模拟撞击的过拟合以及不同头部撞击数据集的分布偏移导致的准确性下降,阻碍了其在临床中的广泛应用。我们提出了一种新的MLHM配置,将无监督域适应与深度神经网络相结合,以预测全脑最大主应变(MPS)和MPS率(MPSR)。利用12780次模拟头部撞击,我们使用域正则化成分分析(DRCA)和基于循环生成对抗网络(cycle-GAN)的方法,对来自302次大学橄榄球(CF)撞击和457次综合格斗(MMA)撞击的目标头部撞击进行了无监督域适应。新模型提高了MPS/MPSR估计的准确性,DRCA方法在预测准确性方面优于其他域适应方法:MPS平均绝对误差(MAE):0.017(CF)和0.020(MMA);MPSR MAE:4.09 s(CF)和6.61 s(MMA)。在另外两个分别包含195次大学橄榄球撞击和260次拳击撞击的保留测试集上,DRCA模型在MPS和MPSR估计MAE方面优于无域适应的基线模型。DRCA域适应方法将MPS/MPSR估计误差降低到远低于先前报道的TBI阈值,从而能够在未来临床应用中准确估计脑变形以检测TBI。

相似文献

4
Finding the Spatial Co-Variation of Brain Deformation With Principal Component Analysis.利用主成分分析寻找大脑变形的空间共变。
IEEE Trans Biomed Eng. 2022 Oct;69(10):3205-3215. doi: 10.1109/TBME.2022.3163230. Epub 2022 Sep 19.
6
Rapid Estimation of Entire Brain Strain Using Deep Learning Models.利用深度学习模型快速估计全脑应变。
IEEE Trans Biomed Eng. 2021 Nov;68(11):3424-3434. doi: 10.1109/TBME.2021.3073380. Epub 2021 Oct 19.
10
Instantaneous Whole-Brain Strain Estimation in Dynamic Head Impact.动态头部撞击中瞬时全脑应变的估计。
J Neurotrauma. 2021 Apr 15;38(8):1023-1035. doi: 10.1089/neu.2020.7281. Epub 2020 Dec 14.

本文引用的文献

6
Finding the Spatial Co-Variation of Brain Deformation With Principal Component Analysis.利用主成分分析寻找大脑变形的空间共变。
IEEE Trans Biomed Eng. 2022 Oct;69(10):3205-3215. doi: 10.1109/TBME.2022.3163230. Epub 2022 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验