Department of Biomedical Engineering and Worcester Polytechnic Institute, Worcester, Massachustts, USA.
Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachustts, USA.
J Neurotrauma. 2021 Apr 15;38(8):1023-1035. doi: 10.1089/neu.2020.7281. Epub 2020 Dec 14.
Head injury models are notoriously time consuming and resource demanding in simulations, which prevents routine application. Here, we extend a convolutional neural network (CNN) to instantly estimate element-wise distribution of peak maximum principal strain (MPS) of the entire brain (>36 k speedup accomplished on a low-end computing platform). To achieve this, head impact rotational velocity and acceleration temporal profiles are combined into two-dimensional images to serve as CNN input for training and prediction of MPS. Compared with the directly simulated counterparts, the CNN-estimated responses (magnitude and distribution) are sufficiently accurate for 92.1% of the cases 10-fold cross-validation using impacts drawn from the real world ( = 5661; range of peak rotational velocity in augmented data extended to 2-40 rad/sec). The success rate further improves to 97.1% for "in-range" impacts ( = 4298). When using the same CNN architecture to train ( = 3064) and test on an independent, reconstructed National Football League (NFL) impact dataset ( = 53; 20 concussions and 33 non-injuries), 51 out of 53, or 96.2% of the cases, are sufficiently accurate. The estimated responses also achieve virtually identical concussion prediction performances relative to the directly simulated counterparts, and they often outperform peak MPS of the whole brain (e.g., accuracy of 0.83 vs. 0.77 leave-one-out cross-validation). These findings support the use of CNN for accurate and efficient estimation of spatially detailed brain strains across the vast majority of head impacts in contact sports. Our technique may hold the potential to transform traumatic brain injury (TBI) research and the design and testing standards of head protective gears by facilitating the transition from acceleration-based approximation to strain-based design and analysis. This would have broad implications in the TBI biomechanics field to accelerate new scientific discoveries. The pre-trained CNN is freely available online at https://github.com/Jilab-biomechanics/CNN-brain-strains.
头部损伤模型在模拟中非常耗时且资源密集,这使得它们无法常规应用。在这里,我们扩展了卷积神经网络 (CNN),以便即时估计整个大脑的峰值最大主应变 (MPS) 的元素分布(在低端计算平台上实现了 >36k 的加速)。为此,将头部撞击的旋转速度和加速度时间历程组合成二维图像,作为 CNN 的输入,用于 MPS 的训练和预测。与直接模拟相比,CNN 估计的响应(幅度和分布)在 10 倍交叉验证中对于 92.1%的情况(使用来自真实世界的冲击, = 5661;增强数据中的峰值旋转速度范围扩展到 2-40 rad/sec)足够准确。对于“在范围内”的冲击,成功率进一步提高到 97.1%( = 4298)。当使用相同的 CNN 架构对独立的、重建的美国国家橄榄球联盟 (NFL) 冲击数据集进行训练( = 3064)和测试( = 53;20 例脑震荡和 33 例非损伤)时,53 例中有 51 例(96.2%)足够准确。与直接模拟相比,估计的响应在预测脑震荡方面也具有几乎相同的性能,并且它们通常优于整个大脑的峰值 MPS(例如,0.83 的准确性与 0.77 的留一交叉验证)。这些发现支持使用 CNN 对接触性运动中绝大多数头部冲击进行精确和高效的脑应变空间详细估计。我们的技术有可能通过从基于加速度的近似转变为基于应变的设计和分析,来改变创伤性脑损伤 (TBI) 研究和头部保护装备的设计和测试标准。这将在 TBI 生物力学领域产生广泛影响,以加速新的科学发现。预训练的 CNN 可在 https://github.com/Jilab-biomechanics/CNN-brain-strains 上免费获得。