Suppr超能文献

动态头部撞击中瞬时全脑应变的估计。

Instantaneous Whole-Brain Strain Estimation in Dynamic Head Impact.

机构信息

Department of Biomedical Engineering and Worcester Polytechnic Institute, Worcester, Massachustts, USA.

Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachustts, USA.

出版信息

J Neurotrauma. 2021 Apr 15;38(8):1023-1035. doi: 10.1089/neu.2020.7281. Epub 2020 Dec 14.

Abstract

Head injury models are notoriously time consuming and resource demanding in simulations, which prevents routine application. Here, we extend a convolutional neural network (CNN) to instantly estimate element-wise distribution of peak maximum principal strain (MPS) of the entire brain (>36 k speedup accomplished on a low-end computing platform). To achieve this, head impact rotational velocity and acceleration temporal profiles are combined into two-dimensional images to serve as CNN input for training and prediction of MPS. Compared with the directly simulated counterparts, the CNN-estimated responses (magnitude and distribution) are sufficiently accurate for 92.1% of the cases 10-fold cross-validation using impacts drawn from the real world ( = 5661; range of peak rotational velocity in augmented data extended to 2-40 rad/sec). The success rate further improves to 97.1% for "in-range" impacts ( = 4298). When using the same CNN architecture to train ( = 3064) and test on an independent, reconstructed National Football League (NFL) impact dataset ( = 53; 20 concussions and 33 non-injuries), 51 out of 53, or 96.2% of the cases, are sufficiently accurate. The estimated responses also achieve virtually identical concussion prediction performances relative to the directly simulated counterparts, and they often outperform peak MPS of the whole brain (e.g., accuracy of 0.83 vs. 0.77 leave-one-out cross-validation). These findings support the use of CNN for accurate and efficient estimation of spatially detailed brain strains across the vast majority of head impacts in contact sports. Our technique may hold the potential to transform traumatic brain injury (TBI) research and the design and testing standards of head protective gears by facilitating the transition from acceleration-based approximation to strain-based design and analysis. This would have broad implications in the TBI biomechanics field to accelerate new scientific discoveries. The pre-trained CNN is freely available online at https://github.com/Jilab-biomechanics/CNN-brain-strains.

摘要

头部损伤模型在模拟中非常耗时且资源密集,这使得它们无法常规应用。在这里,我们扩展了卷积神经网络 (CNN),以便即时估计整个大脑的峰值最大主应变 (MPS) 的元素分布(在低端计算平台上实现了 >36k 的加速)。为此,将头部撞击的旋转速度和加速度时间历程组合成二维图像,作为 CNN 的输入,用于 MPS 的训练和预测。与直接模拟相比,CNN 估计的响应(幅度和分布)在 10 倍交叉验证中对于 92.1%的情况(使用来自真实世界的冲击, = 5661;增强数据中的峰值旋转速度范围扩展到 2-40 rad/sec)足够准确。对于“在范围内”的冲击,成功率进一步提高到 97.1%( = 4298)。当使用相同的 CNN 架构对独立的、重建的美国国家橄榄球联盟 (NFL) 冲击数据集进行训练( = 3064)和测试( = 53;20 例脑震荡和 33 例非损伤)时,53 例中有 51 例(96.2%)足够准确。与直接模拟相比,估计的响应在预测脑震荡方面也具有几乎相同的性能,并且它们通常优于整个大脑的峰值 MPS(例如,0.83 的准确性与 0.77 的留一交叉验证)。这些发现支持使用 CNN 对接触性运动中绝大多数头部冲击进行精确和高效的脑应变空间详细估计。我们的技术有可能通过从基于加速度的近似转变为基于应变的设计和分析,来改变创伤性脑损伤 (TBI) 研究和头部保护装备的设计和测试标准。这将在 TBI 生物力学领域产生广泛影响,以加速新的科学发现。预训练的 CNN 可在 https://github.com/Jilab-biomechanics/CNN-brain-strains 上免费获得。

相似文献

1
Instantaneous Whole-Brain Strain Estimation in Dynamic Head Impact.
J Neurotrauma. 2021 Apr 15;38(8):1023-1035. doi: 10.1089/neu.2020.7281. Epub 2020 Dec 14.
2
Instantaneous Brain Strain Estimation for Automotive Head Impacts via Deep Learning.
Stapp Car Crash J. 2021 Nov;65:139-162. doi: 10.4271/2021-22-0006.
3
Convolutional neural network for efficient estimation of regional brain strains.
Sci Rep. 2019 Nov 22;9(1):17326. doi: 10.1038/s41598-019-53551-1.
4
American Football Helmet Effectiveness Against a Strain-Based Concussion Mechanism.
Ann Biomed Eng. 2022 Nov;50(11):1498-1509. doi: 10.1007/s10439-022-03005-z. Epub 2022 Jul 11.
5
A network-based response feature matrix as a brain injury metric.
Biomech Model Mechanobiol. 2020 Jun;19(3):927-942. doi: 10.1007/s10237-019-01261-y. Epub 2019 Nov 23.
6
The Impact of Drop Test Conditions on Brain Strain Location and Severity: A Novel Approach Using a Deep Learning Model.
Ann Biomed Eng. 2024 Aug;52(8):2234-2246. doi: 10.1007/s10439-024-03525-w. Epub 2024 May 13.
7
A Morphologically Individualized Deep Learning Brain Injury Model.
J Neurotrauma. 2023 Oct;40(19-20):2233-2247. doi: 10.1089/neu.2022.0413. Epub 2023 Jul 18.
8
Effective Head Impact Kinematics to Preserve Brain Strain.
Ann Biomed Eng. 2021 Oct;49(10):2777-2790. doi: 10.1007/s10439-021-02840-w. Epub 2021 Aug 2.
9
Concussion in professional football: biomechanics of the struck player--part 14.
Neurosurgery. 2007 Aug;61(2):313-27; discussion 327-8. doi: 10.1227/01.NEU.0000279969.02685.D0.
10
Evaluation of Brain Response during Head Impact in Youth Athletes Using an Anatomically Accurate Finite Element Model.
J Neurotrauma. 2019 May 15;36(10):1561-1570. doi: 10.1089/neu.2018.6037. Epub 2019 Jan 9.

引用本文的文献

1
Quantitative video analysis of head acceleration events: a review.
Front Bioeng Biotechnol. 2025 Aug 20;13:1658222. doi: 10.3389/fbioe.2025.1658222. eCollection 2025.
4
Effects of anatomy and head motion on spatial patterns of deformation in the human brain.
Ann Biomed Eng. 2025 Apr;53(4):867-880. doi: 10.1007/s10439-024-03671-1. Epub 2024 Dec 31.
6
Potential of Soft-Shelled Rugby Headgear to Lower Regional Brain Strain Metrics During Standard Drop Tests.
Sports Med Open. 2024 Sep 27;10(1):102. doi: 10.1186/s40798-024-00744-2.
8
The Impact of Drop Test Conditions on Brain Strain Location and Severity: A Novel Approach Using a Deep Learning Model.
Ann Biomed Eng. 2024 Aug;52(8):2234-2246. doi: 10.1007/s10439-024-03525-w. Epub 2024 May 13.
10
An Overview of Machine Learning Applications in Sports Injury Prediction.
Cureus. 2023 Sep 28;15(9):e46170. doi: 10.7759/cureus.46170. eCollection 2023 Sep.

本文引用的文献

1
Multiscale Mechanobiology of Brain Injury: Axonal Strain Redistribution.
Biophys J. 2020 Oct 6;119(7):1273-1274. doi: 10.1016/j.bpj.2020.07.041. Epub 2020 Aug 28.
2
Predicting Concussion Outcome by Integrating Finite Element Modeling and Network Analysis.
Front Bioeng Biotechnol. 2020 Apr 15;8:309. doi: 10.3389/fbioe.2020.00309. eCollection 2020.
3
Displacement- and Strain-Based Discrimination of Head Injury Models across a Wide Range of Blunt Conditions.
Ann Biomed Eng. 2020 Jun;48(6):1661-1677. doi: 10.1007/s10439-020-02496-y. Epub 2020 Apr 2.
4
Incorporation of vasculature in a head injury model lowers local mechanical strains in dynamic impact.
J Biomech. 2020 May 7;104:109732. doi: 10.1016/j.jbiomech.2020.109732. Epub 2020 Mar 2.
6
Multi-Directional Dynamic Model for Traumatic Brain Injury Detection.
J Neurotrauma. 2020 Apr 1;37(7):982-993. doi: 10.1089/neu.2018.6340. Epub 2020 Feb 4.
7
A network-based response feature matrix as a brain injury metric.
Biomech Model Mechanobiol. 2020 Jun;19(3):927-942. doi: 10.1007/s10237-019-01261-y. Epub 2019 Nov 23.
8
Convolutional neural network for efficient estimation of regional brain strains.
Sci Rep. 2019 Nov 22;9(1):17326. doi: 10.1038/s41598-019-53551-1.
9
Biomechanics of Periventricular Injury.
J Neurotrauma. 2020 Apr 15;37(8):1074-1090. doi: 10.1089/neu.2019.6634. Epub 2019 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验