Nayanathara Umeka, Yang Fan, Zhang Changhe, Wang Yufu, Rossi Herling Bruna, Smith Samuel A, Beach Maximilian A, Johnston Angus P R, Such Georgina K
School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia.
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
Biomater Sci. 2025 Feb 25;13(5):1335-1346. doi: 10.1039/d4bm01433b.
Endosomal escape is a major bottleneck for efficient intracellular delivery of therapeutic cargoes, particularly for macromolecular biological cargoes such as peptides, proteins and nucleic acids. pH-responsive polymeric nanoparticles that can respond to changes in the pH of intracellular microenvironments have generated substantial interest in navigating the endosomal barrier. In this study, we applied the highly sensitive split luciferase endosomal escape quantification (SLEEQ) assay to better understand the endosomal escape efficiency of dual component pH-responsive nanoparticles based on poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) and poly(2-(diisopropylamino) ethyl methacrylate) (PDPAEMA). Previous work investigated the use of a disulfide-linked HiBiT peptide conjugate encapsulated within the nanoparticle core, which upon meeting the LgBiT protein in the cytosol demonstrated luminescence which could be quantified to assess endosomal escape. However, we were interested in understanding whether this assay could be tuned to understand the endosomal escape of both a therapeutic cargo and a larger carrier. To achieve this, we designed two different HiBiT conjugates by applying a carbonylacrylic-functionalized thioether (non-cleavable) linker, which is more stable in endosomes, and a less stable disulfide (cleavable) linker to attach HiBiT to the nanoparticle core. Nanoparticles with disulfide-linked HiBiT demonstrated a higher endosomal escape efficiency of 6-7%, whereas thioether-linked HiBiT demonstrated <3% endosomal escape efficiency with a twofold decrease in cytosolic delivery. This suggests that degradation of the disulfide linker in endosomes leads to cytosolic delivery of a free HiBiT cargo, while thioether-linked HiBiT polymers are larger and thus fewer HiBiT-carrier conjugates can escape the endosomes. Overall, this work demonstrates that the SLEEQ assay can be tuned to understand the cytosolic delivery of different components based on the use of different linker chemistries and thus it is an important tool for designing therapeutic delivery systems in the future.
内体逃逸是治疗性货物高效细胞内递送的主要瓶颈,特别是对于大分子生物货物,如肽、蛋白质和核酸。能够响应细胞内微环境pH值变化的pH响应性聚合物纳米颗粒在跨越内体屏障方面引起了极大的兴趣。在本研究中,我们应用高灵敏度的分裂荧光素酶内体逃逸定量(SLEEQ)测定法,以更好地了解基于聚(甲基丙烯酸2-(二乙氨基)乙酯)(PDEAEMA)和聚(甲基丙烯酸2-(二异丙氨基)乙酯)(PDPAEMA)的双组分pH响应性纳米颗粒的内体逃逸效率。先前的工作研究了使用包裹在纳米颗粒核心内的二硫键连接的HiBiT肽缀合物,当它在细胞质中与LgBiT蛋白相遇时会发出可量化的发光,以评估内体逃逸。然而,我们感兴趣的是了解该测定法是否可以调整以了解治疗性货物和更大载体的内体逃逸情况。为了实现这一点,我们通过应用羰基丙烯酸官能化的硫醚(不可裂解)接头(在内体中更稳定)和较不稳定的二硫键(可裂解)接头将HiBiT连接到纳米颗粒核心,设计了两种不同的HiBiT缀合物。具有二硫键连接的HiBiT的纳米颗粒表现出更高的内体逃逸效率,为6-7%,而硫醚连接的HiBiT的内体逃逸效率<3%,细胞质递送减少了两倍。这表明内体中二硫键接头的降解导致游离HiBiT货物的细胞质递送,而硫醚连接的HiBiT聚合物更大,因此较少的HiBiT-载体缀合物能够逃离内体。总体而言,这项工作表明,基于使用不同的接头化学,SLEEQ测定法可以调整以了解不同组分的细胞质递送情况,因此它是未来设计治疗性递送系统的重要工具。