Oluk Can, Geisler Wilson S
Center for Perceptual Systems and Department of Psychology, University of Texas at Austin, Austen, TX, USA.
Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
J Vis. 2025 Feb 3;25(2):3. doi: 10.1167/jov.25.2.3.
Many natural tasks require the visual system to classify image patches accurately into target categories, including the category of no target. Natural target categories often involve high levels of within-category variability (uncertainty), making it challenging to uncover the underlying computational mechanisms. Here, we describe these tasks as identification from a set of exhaustive, mutually exclusive target categories, each partitioned into mutually exclusive subcategories. We derive the optimal decision rule and present a computational method to simulate performance for moderately large and complex tasks. We focus on the detection of an additive wavelet target in white noise with five dimensions of stimulus uncertainty: target amplitude, orientation, scale, background contrast, and spatial pattern. We compare the performance of the ideal observer with various heuristic observers. We find that a properly normalized heuristic MAX observer (SNN-MAX) approximates optimal performance. We also find that a convolutional neural network trained on this task approaches but does not reach optimal performance, even with extensive training. We measured human performance on a task with three of these dimensions of uncertainty (orientation, scale, and background pattern). Results show that the pattern of hits and correct rejections for the ideal and SNN-MAX observers (but not a simple MAX observer) aligns with the data. Additionally, we measured performance without scale and orientation uncertainty and found that the effect of uncertainty on performance was less than predicted by any model. This unexpectedly small effect can largely be explained by incorporating biologically plausible levels of intrinsic position uncertainty into the models.
许多自然任务要求视觉系统将图像块准确分类到目标类别中,包括无目标类别。自然目标类别通常在类别内部存在高度的变异性(不确定性),这使得揭示潜在的计算机制具有挑战性。在这里,我们将这些任务描述为从一组详尽的、相互排斥的目标类别中进行识别,每个目标类别又被划分为相互排斥的子类别。我们推导了最优决策规则,并提出了一种计算方法来模拟中等规模和复杂任务的性能。我们专注于在具有五个刺激不确定性维度的白噪声中检测加性小波目标:目标幅度、方向、尺度、背景对比度和空间模式。我们比较了理想观察者与各种启发式观察者的性能。我们发现,经过适当归一化的启发式MAX观察者(SNN-MAX)接近最优性能。我们还发现,即使经过广泛训练,在此任务上训练的卷积神经网络接近但未达到最优性能。我们测量了人类在具有其中三个不确定性维度(方向、尺度和背景模式)的任务上的表现。结果表明,理想观察者和SNN-MAX观察者(而非简单的MAX观察者)的命中和正确拒绝模式与数据一致。此外,我们测量了没有尺度和方向不确定性时的性能,发现不确定性对性能的影响小于任何模型的预测。通过将生物学上合理水平的内在位置不确定性纳入模型,这种意外的小影响在很大程度上可以得到解释。