Kaur Simran, Sisodia Rinki, Gupta Bharat, Gaikwad Kishor, Madhurantakam Chaithanya, Singh Anandita
Department of Biotechnology, Brassica Developmental Biology Laboratory, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi, 110070, India.
Department of Biotechnology, Structural and Molecular Biology Laboratory (SMBL), TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi, 110070, India.
Mol Biol Rep. 2025 Feb 3;52(1):187. doi: 10.1007/s11033-024-10182-8.
Analysis of binding patterns of biomolecules underpin new paradigms for trait engineering. One way of designing early flowering crops is to manipulate genes controlling flowering time. SOC1, a central integrator of flowering, is downregulated by SVP. In amphidiploid Brassica juncea, flowering is plausibly mediated by combinatorial interactions involving natural variants of SOC1 promoter and SVP protein homologs. Although fluctuating temperatures influence energetics of molecular interactions and phenotypes, mechanistic insights on these remain unknown. Herein, we report diversity in 50 homologs of SVP proteins from 25 Brassicaceae species.
Sequence and phylogenetic analysis of 9 natural variants of B. juncea SVP revealed differences in MIKC domains and sub-genome of origin. Generation and refinement of 15 SVP protein models (natural and hypothetical) using I-TASSER and ALPHAFOLD, and 3 SOC1 promoter fragments using 3D-DART, revealed structural diversity. Notwithstanding, binding affinity of 48 docked complexes analysed using HADDOCK and PreDBA were similar. Analysis of 27 docked complexes for distribution of shared or unique binding patterns and type of molecular contacts (π-π stacking, hydrophobic interactions, Van-der-Waals forces, H-bonds) using PyMOL, CCP4i, DNAproDB, PremPDI and DIMPLOT revealed extensive variation implicating compensatory mutations in preserving binding affinity. Yeast one-hybrid assays validated binding potential predicted in docked complexes. Conserved amino-acid and nucleotide residues involved in non-covalent interactions were identified. Computational alanine substitution established cruciality of amino-acid hotspots conferring stability to docked complexes.
Our study is important as identification of crucial amino-acid hotspots is essential for rational protein design. Targeted mutagenesis resulting in modified binding spectrum of regulatory proteins suggests a way forward for trait engineering.
生物分子结合模式的分析为性状工程提供了新的范例。设计早花作物的一种方法是操纵控制开花时间的基因。SOC1是开花的核心整合因子,受SVP下调。在双二倍体芥菜型油菜中,开花可能是由涉及SOC1启动子自然变体和SVP蛋白同源物的组合相互作用介导的。尽管温度波动会影响分子相互作用的能量学和表型,但关于这些方面的机制见解仍然未知。在此,我们报道了来自25个十字花科物种的50个SVP蛋白同源物的多样性。
对芥菜型油菜SVP的9个自然变体进行序列和系统发育分析,揭示了MIKC结构域和起源亚基因组的差异。使用I-TASSER和ALPHAFOLD生成并优化了15个SVP蛋白模型(天然和假设的),使用3D-DART生成了3个SOC1启动子片段,揭示了结构多样性。尽管如此,使用HADDOCK和PreDBA分析的48个对接复合物的结合亲和力相似。使用PyMOL、CCP4i、DNAproDB、PremPDI和DIMPLOT分析27个对接复合物的共享或独特结合模式分布以及分子接触类型(π-π堆积、疏水相互作用、范德华力、氢键)显示出广泛的差异,这意味着在保持结合亲和力方面存在补偿性突变。酵母单杂交试验验证了对接复合物中预测的结合潜力。鉴定了参与非共价相互作用的保守氨基酸和核苷酸残基。计算丙氨酸取代确定了赋予对接复合物稳定性的氨基酸热点的关键作用。
我们的研究很重要,因为关键氨基酸热点的鉴定对于合理的蛋白质设计至关重要。导致调节蛋白结合谱改变的靶向诱变提出了性状工程的前进方向。