Chen Xirui, Liu Qi, Zhang Jiangjiang, Tan Linjie, Li Jiangao, Ke Miao-La, Tang Ben Zhong, Li Ying
Innovation Research Center for AIE Pharmaceutical Biology,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China.
ACS Nano. 2025 Feb 18;19(6):6221-6235. doi: 10.1021/acsnano.4c15372. Epub 2025 Feb 3.
Fluorescent lateral flow immunoassay (LFIA) is recognized as a leading quantitative point-of-care (POC) platform for precise clinical diagnostics. However, conventional fluorescent nanoprobes are hampered by low quantum yield (QY), which constrain the sensitivity of fluorescent LFIA. Herein, we employed a butterfly aggregation-induced emission luminogen (AIEgen) and developed the fully inter-restricted assembly with a polyphenyl polymer poly(maleicanhydride-styrene) (PMPS) to create highly fluorescent homogeneous nanoparticles (ho-AIENPs) with QY over 91%. Compared to conventional fluorescent nanoparticles with a core-shell heterostructure (he-AIENPs), ho-AIENPs demonstrate a homogeneous structure with AIEgens uniformly dispersed in the PMPS matrix nanoparticles. The robust and broad intermolecular interaction (e.g., π-π interactions) between PMPS and AIEgens effectively restricts the molecular motion of AIEgens, producing a 30% increase in the QY of ho-AIENPs than he-AIENPs. Ho-AIENPs exhibit a 5-fold and 80-fold improved sensitivity compared to traditional he-AIENP-based fluorescent LFIAs and AuNP-based colorimetric LFIAs. Owing to the excellent optical properties of ho-AIENPs, we developed ho-AIENP-based multiplex LFIAs, which can simultaneously detect lung cancer biomarkers with exceptionally high sensitivity. In contrast to the conventional core-shell assembly and physical encapsulation strategies, the fully inter-restricted assembly strategy is promising, versatile, and efficient in enhancing the polymer matrix-derived fluorescent particles and sensitizing the immunoassays.
荧光侧向流动免疫分析(LFIA)被认为是用于精确临床诊断的领先定量即时检测(POC)平台。然而,传统的荧光纳米探针受到低量子产率(QY)的限制,这制约了荧光LFIA的灵敏度。在此,我们采用了一种蝴蝶聚集诱导发光发光体(AIEgen),并与聚苯基聚合物聚(马来酸酐 - 苯乙烯)(PMPS)开发了完全相互限制的组装体,以制备量子产率超过91%的高荧光均匀纳米颗粒(ho - AIENPs)。与具有核壳异质结构的传统荧光纳米颗粒(he - AIENPs)相比,ho - AIENPs呈现出均匀结构,AIEgens均匀分散在PMPS基质纳米颗粒中。PMPS与AIEgens之间强大而广泛的分子间相互作用(例如π - π相互作用)有效地限制了AIEgens的分子运动,使ho - AIENPs的QY比he - AIENPs提高了30%。与传统的基于he - AIENP的荧光LFIAs和基于AuNP的比色LFIAs相比,ho - AIENPs的灵敏度提高了5倍和80倍。由于ho - AIENPs具有优异的光学性能,我们开发了基于ho - AIENP的多重LFIAs,其能够以极高的灵敏度同时检测肺癌生物标志物。与传统的核壳组装和物理封装策略相比,完全相互限制的组装策略在增强聚合物基质衍生的荧光颗粒和提高免疫分析灵敏度方面具有前景、通用性和高效性。