Lin Jhen-Dong, Kuo Po-Chen, Lambert Neill, Miranowicz Adam, Nori Franco, Chen Yueh-Nan
Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan.
Center for Quantum Frontiers of Research & Technology, NCKU, Tainan, 701, Taiwan.
Nat Commun. 2025 Feb 3;16(1):1289. doi: 10.1038/s41467-025-56242-w.
Exceptional points (EPs) are singularities in the spectra of non-Hermitian operators where eigenvalues and eigenvectors coalesce. Open quantum systems have recently been explored as EP testbeds due to their non-Hermitian nature. However, most studies focus on the Markovian limit, leaving a gap in understanding EPs in the non-Markovian regime. This work addresses this gap by proposing a general framework based on two numerically exact descriptions of non-Markovian dynamics: the pseudomode equation of motion (PMEOM) and the hierarchical equations of motion (HEOM). The PMEOM is particularly useful due to its Lindblad-type structure, aligning with previous studies in the Markovian regime while offering deeper insights into EP identification. This framework incorporates non-Markovian effects through auxiliary degrees of freedom, enabling the discovery of additional or higher-order EPs that are inaccessible in the Markovian regime. We demonstrate the utility of this approach using the spin-boson model and linear bosonic systems.
例外点(EPs)是非厄米算符谱中的奇点,在这些点处本征值和本征向量会合并。由于其非厄米性质,开放量子系统最近已被作为例外点的试验平台进行研究。然而,大多数研究集中在马尔可夫极限情况,这使得在理解非马尔可夫 regime 中的例外点方面存在空白。这项工作通过基于非马尔可夫动力学的两种数值精确描述提出一个通用框架来填补这一空白:伪模运动方程(PMEOM)和层级运动方程(HEOM)。PMEOM 因其林德布拉德型结构特别有用,它与马尔可夫 regime 中的先前研究一致,同时能更深入地洞察例外点的识别。该框架通过辅助自由度纳入非马尔可夫效应,从而能够发现马尔可夫 regime 中无法获得的额外或高阶例外点。我们使用自旋 - 玻色子模型和线性玻色子系统证明了这种方法的实用性。