State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
University of the Chinese Academy of Sciences, Beijing 100049, China.
Phys Rev Lett. 2023 Mar 17;130(11):110402. doi: 10.1103/PhysRevLett.130.110402.
Quantum heat engines are expected to outperform the classical counterparts due to quantum coherences involved. Here we experimentally execute a single-ion quantum heat engine and demonstrate, for the first time, the dynamics and the enhanced performance of the heat engine originating from the Liouvillian exceptional points (LEPs). In addition to the topological effects related to LEPs, we focus on thermodynamic effects, which can be understood by the Landau-Zener-Stückelberg process under decoherence. We witness a positive net work from the quantum heat engine if the heat engine cycle dynamically encircles a LEP. Further investigation reveals that a larger net work is done when the system is operated closer to the LEP. We attribute the enhanced performance of the quantum heat engine to the Landau-Zener-Stückelberg process, enabled by the eigenenergy landscape in the vicinity of the LEP, and the exceptional point-induced topological transition. Therefore, our results open new possibilities toward LEP-enabled control of quantum heat engines and of thermodynamic processes in open quantum systems.
量子热机有望超越经典热机,因为其中涉及量子相干。在这里,我们实验性地执行了单离子量子热机,并首次展示了源自李代数奇点(LEP)的热机的动力学和增强性能。除了与 LEP 相关的拓扑效应外,我们还关注热力学效应,这些效应可以通过退相干下的朗道-曾伯格过程来理解。如果热机循环动态包围 LEP,则可以从量子热机中获得正净功。进一步的研究表明,当系统更接近 LEP 运行时,会产生更大的净功。我们将量子热机性能的提高归因于 Landau-Zener-Stückelberg 过程,该过程由 LEP 附近的本征能景观和异常点诱导的拓扑转变所支持。因此,我们的结果为 LEP 实现对量子热机和开放量子系统中热力学过程的控制开辟了新的可能性。