Suppr超能文献

用于识别有神经疾病风险的危重症儿童的可互操作模型。

Interoperable Models for Identifying Critically Ill Children at Risk of Neurologic Morbidity.

作者信息

Horvat Christopher M, Barda Amie J, Perez Claudio Eddie, Au Alicia K, Bauman Andrew, Li Qingyang, Li Ruoting, Munjal Neil, Wainwright Mark S, Boonchalermvichien Tanupat, Hochheiser Harry, Clark Robert S B

机构信息

Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.

Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania.

出版信息

JAMA Netw Open. 2025 Feb 3;8(2):e2457469. doi: 10.1001/jamanetworkopen.2024.57469.

Abstract

IMPORTANCE

Decreasing mortality in the field of pediatric critical care medicine has shifted practicing clinicians' attention to preserving patients' neurodevelopmental potential as a main objective. Earlier identification of critically ill children at risk for incurring neurologic morbidity would facilitate heightened surveillance that could lead to timelier clinical detection, earlier interventions, and preserved neurodevelopmental trajectory.

OBJECTIVES

To develop machine-learning models for identifying acquired neurologic morbidity in hospitalized pediatric patients with critical illness and assess correlation with contemporary serum-based, brain injury-derived biomarkers.

DESIGN, SETTING, AND PARTICIPANTS: This prognostic study used data from all children admitted to a quaternary pediatric intensive care unit in a large, freestanding children's hospital in Western Pennsylvania between January 1, 2010, and December 31, 2022. External model validation used data from children admitted between January 1, 2018, and December 31, 2023, to a quaternary pediatric intensive care unit in a large, freestanding children's hospital that serves as a referral center for the 5-state region of Washington, Wyoming, Alaska, Montana, and Idaho.

EXPOSURES

Critical illness.

MAIN OUTCOMES AND MEASURES

The outcome was neurologic morbidity, defined according to a computable, composite definition at the development site or an order for neurocritical care consultation at the validation site. Models were developed using varying time windows for temporal feature engineering and varying censored time horizons between the last feature and the identified neurologic morbidity. A generalizable model created at the development site was optimized and assessed at an external validation site. Correlation was assessed between development site model predictions and measurements of brain biomarkers from a convenience cohort.

RESULTS

After exclusions, there were 18 568 encounters from 2010 to 2022 in the development site generalizable model cohort (median age, 70 [IQR, 18-161] months; 8325 [45%] female). There were 6825 encounters from 2018 to 2021 at the external validation site (median age, 96 [IQR 18-171] months; 3159 [46%] female). A generalizable extreme gradient boosted model with a 24-hour time horizon and 48-hour feature engineering window demonstrated an F1 score of 0.37 (95% CI, 0.33-0.40), area under the receiver operating characteristics curve of 0.81 (95% CI, 0.78-0.83), and number needed to alert of 4 at the validation site. After recalibration at the validation site, the Brier score was 0.04. Serum levels of the brain injury biomarker glial fibrillary acidic protein significantly correlated with model output (rs = 0.34; P = .007).

CONCLUSIONS AND RELEVANCE

This prognostic study of prediction models for detecting neurologic morbidity in critically ill children demonstrated a well-performing ensemble of models with biomolecular corroboration. Prospective assessment and refinement of biomarker-coupled risk models in pediatric critical illness are warranted.

摘要

重要性

儿科重症医学领域死亡率的下降,已将临床医生的注意力转移到将保护患者的神经发育潜能作为主要目标上。更早识别有发生神经疾病风险的危重症儿童,将有助于加强监测,从而实现更及时的临床检测、更早的干预,并保留神经发育轨迹。

目的

开发机器学习模型,用于识别住院危重症儿科患者的获得性神经疾病,并评估与当代基于血清的脑损伤衍生生物标志物的相关性。

设计、地点和参与者:这项预后研究使用了2010年1月1日至2022年12月31日期间,宾夕法尼亚州西部一家大型独立儿童医院的四级儿科重症监护病房收治的所有儿童的数据。外部模型验证使用了2018年1月1日至2023年12月31日期间,一家大型独立儿童医院的四级儿科重症监护病房收治的儿童的数据,该医院是华盛顿、怀俄明、阿拉斯加、蒙大拿和爱达荷五州地区的转诊中心。

暴露因素

危重症。

主要结局和测量指标

结局为神经疾病,在开发地点根据可计算的综合定义确定,或在验证地点根据神经重症监护会诊医嘱确定。使用不同的时间窗口进行时间特征工程,并在最后一个特征与确定的神经疾病之间设置不同的删失时间范围,开发模型。在开发地点创建的可推广模型在外部验证地点进行优化和评估。在一个便利样本队列中,评估开发地点模型预测与脑生物标志物测量值之间的相关性。

结果

排除后,开发地点可推广模型队列在2010年至2022年有18568次病例(中位年龄70[四分位间距,18 - 161]个月;8325例[45%]为女性)。外部验证地点在2018年至2021年有6825次病例(中位年龄96[四分位间距18 - 171]个月;3159例[46%]为女性)。一个具有24小时时间范围和48小时特征工程窗口的可推广极端梯度提升模型,在验证地点的F1分数为0.37(95%置信区间,0.33 - 0.40),受试者操作特征曲线下面积为0.81(95%置信区间,0.78 - 0.83),需警戒数为4。在验证地点重新校准后,Brier分数为0.04。脑损伤生物标志物胶质纤维酸性蛋白的血清水平与模型输出显著相关(rs = 0.34;P = 0.007)。

结论和相关性

这项关于检测危重症儿童神经疾病的预测模型的预后研究,展示了一组性能良好且有生物分子佐证的模型。有必要对儿科危重症中生物标志物耦合风险模型进行前瞻性评估和优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5b3/11795326/aad6c2c7417f/jamanetwopen-e2457469-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验