Suppr超能文献

评估代谢性减重手术登记系统的公平性:对英国、德国、法国、荷兰、挪威和瑞典数据字典的比较分析。

Assessing the FAIRness of Metabolic Bariatric Surgery Registries: a Comparative Analysis of Data Dictionaries from the UK, Germany, France, Netherlands, Norway, and Sweden.

作者信息

Torensma Bart, Hany Mohamed, Fink Jodok M, Ahmed Ahmed R, Liem Ronald S L, Lazzati Andrea, Pattou François, Ottosson Johan, Kersloot Martijn G

机构信息

Leiden University Medical Center, Leiden, Netherlands.

Medical Research Institute, Alexandria University, Alexandria, Egypt.

出版信息

Obes Surg. 2025 Mar;35(3):1036-1044. doi: 10.1007/s11695-025-07701-2. Epub 2025 Feb 4.

Abstract

BACKGROUND

This study is part of an initiative to improve the FAIRness (Findability, Accessibility, Interoperability, Reusability) of metabolic bariatric surgery (MBS) registries globally. It explores the extent to which European registry data can be manually integrated without first making them FAIR and assesses these registries' current level of FAIRness. The findings establish a baseline for evaluation and provide recommendations to enhance MBS data management practices.

METHODS

Data dictionaries from five national MBS registries in Germany, France, the Netherlands, the UK, and a combined registry for Scandinavia (Norway and Sweden) were evaluated regarding their ability to manually integrate registry datasets with one another. The FAIR Data Maturity Model from the Research Data Alliance (RDA) FAIR Data Maturity Model Working Group was used to assess the FAIRness of both metadata and data of the registries.

RESULTS

The registries showed significant variability in variables and coding structures, with inconsistent numerical formats and without linkage to international standards such as SNOMED CT, LOINC, or NCIt, making data integration labor-intensive and assumption-heavy. Despite the presence of data dictionaries, all registries failed the FAIR assessment because machine-readable data was unavailable, and only human-readable metadata was available in the form of data dictionaries in a spreadsheet.

CONCLUSION

Our study reveals significant inconsistencies in data structuring and a failure to comply with the FAIR Principles, which limit effective data analysis and comparison. This emphasizes the critical need for standardized data management practices. We recommend four next steps to improve the FAIRness of MBS registries: (1) annotate data elements using standardized terminology systems, (2) deposit registry-level metadata in a repository, (3) request globally unique and persistent identifiers for datasets, and (4) define access restrictions.

摘要

背景

本研究是一项旨在提高全球代谢性减肥手术(MBS)注册库的FAIR性(可查找性、可访问性、互操作性、可重用性)的倡议的一部分。它探讨了在不首先使其具备FAIR性的情况下,欧洲注册库数据能够被手动整合的程度,并评估了这些注册库当前的FAIR性水平。研究结果为评估建立了基线,并为加强MBS数据管理实践提供了建议。

方法

对德国、法国、荷兰、英国的五个国家MBS注册库以及斯堪的纳维亚(挪威和瑞典)的一个联合注册库的数据字典进行了评估,以确定它们相互手动整合注册库数据集的能力。使用研究数据联盟(RDA)FAIR数据成熟度模型工作组的FAIR数据成熟度模型来评估注册库元数据和数据的FAIR性。

结果

这些注册库在变量和编码结构上存在显著差异,数字格式不一致,且未与国际标准(如SNOMED CT、LOINC或NCIt)建立链接,这使得数据整合工作繁重且依赖大量假设。尽管存在数据字典,但所有注册库均未通过FAIR评估,因为无法获得机器可读数据,仅以电子表格形式的数据字典存在人类可读的元数据。

结论

我们的研究揭示了数据结构方面存在重大不一致,且未遵守FAIR原则,这限制了有效的数据分析和比较。这凸显了标准化数据管理实践的迫切需求。我们建议采取以下四个后续步骤来提高MBS注册库的FAIR性:(1)使用标准化术语系统注释数据元素;(2)将注册库级别的元数据存入存储库;(3)为数据集请求全球唯一且持久的标识符;(4)定义访问限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3852/11906509/24ce2ed2f005/11695_2025_7701_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验