Suppr超能文献

非靶向代谢组学的离子抑制校正与归一化

Ion suppression correction and normalization for non-targeted metabolomics.

作者信息

Mahmud Iqbal, Wei Bo, Veillon Lucas, Tan Lin, Martinez Sara, Tran Bao, Raskind Alexander, de Jong Felice, Liu Yiwei, Ding Jibin, Xiong Yun, Chan Wai-Kin, Akbani Rehan, Weinstein John N, Beecher Chris, Lorenzi Philip L

机构信息

Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA.

IROA Technologies, Chapel Hill, NC, USA.

出版信息

Nat Commun. 2025 Feb 4;16(1):1347. doi: 10.1038/s41467-025-56646-8.

Abstract

Ion suppression is a major problem in mass spectrometry (MS)-based metabolomics; it can dramatically decrease measurement accuracy, precision, and sensitivity. Here we report a method, the IROA TruQuant Workflow, that uses a stable isotope-labeled internal standard (IROA-IS) library plus companion algorithms to: 1) measure and correct for ion suppression, and 2) perform Dual MSTUS normalization of MS metabolomic data. We evaluate the method across ion chromatography (IC), hydrophilic interaction liquid chromatography (HILIC), and reversed-phase liquid chromatography (RPLC)-MS systems in both positive and negative ionization modes, with clean and unclean ion sources, and across different biological matrices. Across the broad range of conditions tested, all detected metabolites exhibit ion suppression ranging from 1% to >90% and coefficients of variation ranging from 1% to 20%, but the Workflow and companion algorithms are highly effective at nulling out that suppression and error. To demonstrate a routine application of the Workflow, we employ the Workflow to study ovarian cancer cell response to the enzyme-drug L-asparaginase (ASNase). The IROA-normalized data reveal significant alterations in peptide metabolism, which have not been reported previously. Overall, the Workflow corrects ion suppression across diverse analytical conditions and produces robust normalization of non-targeted metabolomic data.

摘要

离子抑制是基于质谱(MS)的代谢组学中的一个主要问题;它会显著降低测量的准确性、精密度和灵敏度。在此,我们报告一种方法,即IROA TruQuant工作流程,该方法使用稳定同位素标记的内标(IROA-IS)库及配套算法来:1)测量并校正离子抑制,以及2)对MS代谢组学数据进行双MSTUS归一化。我们在离子色谱(IC)、亲水作用液相色谱(HILIC)和反相液相色谱(RPLC)-MS系统中,在正离子和负离子模式下,使用清洁和不清洁的离子源,并在不同生物基质中评估该方法。在所测试的广泛条件下,所有检测到的代谢物的离子抑制范围为1%至>90%,变异系数范围为1%至20%,但该工作流程及配套算法在消除这种抑制和误差方面非常有效。为了证明该工作流程的常规应用,我们使用该工作流程研究卵巢癌细胞对酶药物L-天冬酰胺酶(ASNase)的反应。经IROA归一化的数据揭示了肽代谢的显著变化,这在以前尚未见报道。总体而言,该工作流程可校正不同分析条件下的离子抑制,并对非靶向代谢组学数据进行可靠的归一化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验