Madewell Zachary J, Rodriguez Dania M, Thayer Maile B, Rivera-Amill Vanessa, Paz-Bailey Gabriela, Adams Laura E, Wong Joshua M
Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, USA.
Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico, USA.
Infect Dis Poverty. 2025 Feb 4;14(1):5. doi: 10.1186/s40249-025-01273-0.
Distinguishing between non-severe and severe dengue is crucial for timely intervention and reducing morbidity and mortality. World Health Organization (WHO)-recommended warning signs offer a practical approach for clinicians but have limited sensitivity and specificity. This study aims to evaluate machine learning (ML) model performance compared to WHO-recommended warning signs in predicting severe dengue among laboratory-confirmed cases in Puerto Rico.
We analyzed data from Puerto Rico's Sentinel Enhanced Dengue Surveillance System (May 2012-August 2024), using 40 clinical, demographic, and laboratory variables. Nine ML models, including Decision Trees, K-Nearest Neighbors, Naïve Bayes, Support Vector Machines, Artificial Neural Networks, AdaBoost, CatBoost, LightGBM, and XGBoost, were trained using fivefold cross-validation and evaluated with area under the receiver operating characteristic curve (AUC-ROC), sensitivity, and specificity. A subanalysis excluded hemoconcentration and leukopenia to assess performance in resource-limited settings. An AUC-ROC value of 0.5 indicates no discriminative power, while values closer to 1.0 reflect better performance.
Among the 1708 laboratory-confirmed dengue cases, 24.3% were classified as severe. Gradient boosting algorithms achieved the highest predictive performance, with an AUC-ROC of 97.1% (95% CI: 96.0-98.3%) for CatBoost using the full 40-variable feature set. Feature importance analysis identified hemoconcentration (≥ 20% increase during illness or ≥ 20% above baseline for age and sex), leukopenia (white blood cell count < 4000/mm), and timing of presentation at 4-6 days post-symptom onset as key predictors. When excluding hemoconcentration and leukopenia, the CatBoost AUC-ROC was 96.7% (95% CI: 95.5-98.0%), demonstrating minimal reduction in performance. Individual warning signs like abdominal pain and restlessness had sensitivities of 79.0% and 64.6%, but lower specificities of 48.4% and 59.1%, respectively. Combining ≥ 3 warning signs improved specificity (80.9%) while maintaining moderate sensitivity (78.6%), resulting in an AUC-ROC of 74.0%.
ML models, especially gradient boosting algorithms, outperformed traditional warning signs in predicting severe dengue. Integrating these models into clinical decision-support tools could help clinicians better identify high-risk patients, guiding timely interventions like hospitalization, closer monitoring, or the administration of intravenous fluids. The subanalysis excluding hemoconcentration confirmed the models' applicability in resource-limited settings, where access to laboratory data may be limited.
区分非重症登革热和重症登革热对于及时干预以及降低发病率和死亡率至关重要。世界卫生组织(WHO)推荐的警示标志为临床医生提供了一种实用方法,但敏感性和特异性有限。本研究旨在评估机器学习(ML)模型在预测波多黎各实验室确诊病例中的重症登革热方面与WHO推荐的警示标志相比的性能。
我们分析了波多黎各哨兵增强登革热监测系统(2012年5月 - 2024年8月)的数据,使用了40个临床、人口统计学和实验室变量。九个ML模型,包括决策树、K近邻、朴素贝叶斯、支持向量机、人工神经网络、AdaBoost、CatBoost、LightGBM和XGBoost,采用五折交叉验证进行训练,并通过受试者操作特征曲线下面积(AUC - ROC)、敏感性和特异性进行评估。一项亚分析排除了血液浓缩和白细胞减少症,以评估在资源有限环境中的性能。AUC - ROC值为0.5表示无判别能力,而值越接近1.0反映性能越好。
在1708例实验室确诊的登革热病例中,24.3%被归类为重症。梯度提升算法实现了最高的预测性能,使用完整的40变量特征集时,CatBoost的AUC - ROC为97.1%(95%CI:96.0 - 98.3%)。特征重要性分析确定血液浓缩(疾病期间增加≥20%或高于年龄和性别的基线≥20%)、白细胞减少症(白细胞计数<4000/mm)以及症状出现后4 - 6天的就诊时间为关键预测因素。排除血液浓缩和白细胞减少症后,CatBoost的AUC - ROC为96.7%(95%CI:95.5 - 98.0%),表明性能下降最小。像腹痛和烦躁不安等个体警示标志的敏感性分别为79.0%和64.6%,但特异性较低,分别为48.4%和59.1%。结合≥3个警示标志可提高特异性(80.9%),同时保持中等敏感性(78.6%),AUC - ROC为74.0%。
ML模型,尤其是梯度提升算法,在预测重症登革热方面优于传统警示标志。将这些模型整合到临床决策支持工具中可以帮助临床医生更好地识别高危患者,指导及时干预,如住院、密切监测或静脉输液治疗。排除血液浓缩的亚分析证实了这些模型在资源有限环境中的适用性,在这些环境中获取实验室数据可能有限。