Suppr超能文献

基于机器学习的左冠状动脉分叉处血流动力学参数预测:一种计算流体动力学方法。

Machine learning-based prediction of hemodynamic parameters in left coronary artery bifurcation: A CFD approach.

作者信息

Malek Sara, Eskandari Arshia, Sharbatdar Mahkame

机构信息

Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19991-43344, Iran.

出版信息

Heliyon. 2025 Jan 16;11(2):e41973. doi: 10.1016/j.heliyon.2025.e41973. eCollection 2025 Jan 30.

Abstract

Coronary artery disease (CAD) is a leading cause of global mortality, often involving the development of atherosclerotic plaques in coronary arteries, particularly at bifurcation sites. Percutaneous coronary intervention (PCI) of bifurcation lesions presents challenges, necessitating accurate assessment of hemodynamic parameters such as wall shear stress (WSS) and oscillatory shear index (OSI) to predict acute coronary syndrome (ACS) risk. Computational fluid dynamics (CFD) provides valuable insights but is computationally intensive, prompting exploration of machine learning (ML) models for efficient hemodynamics prediction. This study aims to bridge the gap in understanding the influence of stenosis severity and location on hemodynamics in the left coronary artery (LCA) bifurcation by integrating ML algorithms with comprehensive CFD simulations, thereby enhancing non-invasive prediction of complex hemodynamics. An extensive dataset of 6858 synthetic LCA geometries with varying plaque severities and locations was generated for analysis. Hemodynamic parameters (TAWSS and OSI) were computed using CFD simulations and utilized for ML model training. Fourteen ML algorithms were employed for regression analysis, and their performance was evaluated using multiple metrics. The Decision Tree Regressor and K Nearest Neighbors models demonstrated the most effective prediction of TAWSS and OSI parameters, aligning well with CFD simulation results. The Decision Tree Regressor showed minimal prediction discrepancies (TAWSS: R2 = 0.998952, MAE = 0.000587, RMSE = 0.001626; OSI: R2 = 0.961977, MAE = 0.022264, RMSE = 0.041411) offering rapid and reliable assessments of hemodynamic conditions in the LCA bifurcation. Integration of ML algorithms with comprehensive CFD simulations provides a promising approach to enhance the non-invasive prediction of complex hemodynamics in the LCA bifurcation. The ability to efficiently predict hemodynamic parameters could significantly aid medical practitioners in time-sensitive clinical settings, offering valuable insights for coronary artery disease management. Further research is warranted to evaluate the effectiveness of deep learning models and address challenges in patient-specific applications.

摘要

冠状动脉疾病(CAD)是全球死亡的主要原因,常涉及冠状动脉粥样硬化斑块的形成,尤其是在分叉部位。分叉病变的经皮冠状动脉介入治疗(PCI)具有挑战性,需要准确评估血流动力学参数,如壁面切应力(WSS)和振荡切变指数(OSI),以预测急性冠状动脉综合征(ACS)风险。计算流体动力学(CFD)提供了有价值的见解,但计算量很大,促使人们探索机器学习(ML)模型以进行高效的血流动力学预测。本研究旨在通过将ML算法与全面的CFD模拟相结合,弥合对左冠状动脉(LCA)分叉处狭窄严重程度和位置对血流动力学影响的理解差距,从而加强对复杂血流动力学的无创预测。生成了一个包含6858个具有不同斑块严重程度和位置的合成LCA几何形状的广泛数据集用于分析。使用CFD模拟计算血流动力学参数(TAWSS和OSI),并将其用于ML模型训练。采用14种ML算法进行回归分析,并使用多种指标评估其性能。决策树回归器和K近邻模型对TAWSS和OSI参数的预测最为有效,与CFD模拟结果吻合良好。决策树回归器显示出最小的预测差异(TAWSS:R2 = 0.998952,MAE = 0.000587,RMSE = 0.001626;OSI:R2 = 0.961977,MAE = 0.022264,RMSE = 0.041411),能够快速可靠地评估LCA分叉处的血流动力学状况。将ML算法与全面的CFD模拟相结合,为加强LCA分叉处复杂血流动力学的无创预测提供了一种有前景的方法。有效预测血流动力学参数的能力可以在时间敏感的临床环境中显著帮助医生,为冠状动脉疾病管理提供有价值的见解。有必要进一步研究评估深度学习模型的有效性,并解决特定患者应用中的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/11791239/bbc0e7529cad/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验