Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aramaki-aza-aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
Commun Biol. 2021 Jan 22;4(1):99. doi: 10.1038/s42003-020-01638-1.
The clinical treatment planning of coronary heart disease requires hemodynamic parameters to provide proper guidance. Computational fluid dynamics (CFD) is gradually used in the simulation of cardiovascular hemodynamics. However, for the patient-specific model, the complex operation and high computational cost of CFD hinder its clinical application. To deal with these problems, we develop cardiovascular hemodynamic point datasets and a dual sampling channel deep learning network, which can analyze and reproduce the relationship between the cardiovascular geometry and internal hemodynamics. The statistical analysis shows that the hemodynamic prediction results of deep learning are in agreement with the conventional CFD method, but the calculation time is reduced 600-fold. In terms of over 2 million nodes, prediction accuracy of around 90%, computational efficiency to predict cardiovascular hemodynamics within 1 second, and universality for evaluating complex arterial system, our deep learning method can meet the needs of most situations.
冠心病的临床治疗方案需要血流动力学参数来提供适当的指导。计算流体动力学(CFD)逐渐被应用于心血管血流动力学的模拟中。然而,对于特定于患者的模型,CFD 的复杂操作和高计算成本阻碍了其临床应用。为了解决这些问题,我们开发了心血管血流动力学点数据集和双采样通道深度学习网络,可以分析和再现心血管几何形状和内部血流动力学之间的关系。统计分析表明,深度学习的血流动力学预测结果与传统 CFD 方法一致,但计算时间减少了 600 倍。在超过 200 万个节点的情况下,我们的深度学习方法可以在 1 秒内预测心血管血流动力学,预测准确率在 90%左右,计算效率高,并且可以评估复杂的动脉系统,具有通用性,能够满足大多数情况下的需求。