Suppr超能文献

拉曼光谱与质谱用于菌株序列分型的比较:一项单中心研究

Comparison of Raman spectroscopy with mass spectrometry for sequence typing of strains: a single-center study.

作者信息

Liu Suling, Zhang Ni, Tang Jiawei, Chen Chong, Wang Weisha, Zhou Jingfang, Ye Long, Chen Xiaoli, Li ZhengKang, Wang Liang

机构信息

Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.

School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.

出版信息

Microbiol Spectr. 2025 Mar 4;13(3):e0142524. doi: 10.1128/spectrum.01425-24. Epub 2025 Feb 5.

Abstract

UNLABELLED

The rapid sequence typing (ST) of bacterial strains is crucial for effective nosocomial infection control and mitigating the spread of nosocomial pathogens, e.g., . While accurate in identifying strains, current typing methods are often impractical in clinical settings due to their time-consuming nature. This study developed a novel approach, combining surface-enhanced Raman spectroscopy (SERS) with machine-learning (ML) algorithms, to construct predictive models for sequence typing based on SERS spectra. The objective was to assess the feasibility of this integrated method for efficient sequence typing of strains. Clinically isolated strains ( = 267) were collected from a single hospital between 2013 and 2023. Based on multilocus sequence typing, 39 STs of were identified. Then, a SERS spectral database for all these strains was constructed, and predictive models based on eight ML algorithms were developed to predict SERS signals to determine their STs, among which the support vector machine (SVM) model had the best performance (fivefold cross-validation = 99.74%). The typing capacity of the SERS-SVM method was compared with that of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) for sequence typing, confirming the superiority of SERS-SVM over MALDI-TOF mass spectrometer. This pilot study lays the groundwork for employing the SERS-ML method to rapidly identify strain types in clinical laboratories, aiding in controlling bacterial pathogen transmission. Further studies are warranted to evaluate its potential in nosocomial surveillance systems, especially for rapidly identifying outbreaks within hospitals.

IMPORTANCE

The rapid and accurate sequence typing (ST) of bacterial pathogens is pivotal in controlling transmission within healthcare settings. infection, known for its high transmissibility and drug resistance, presents a major challenge in nosocomial infection control. In this study, surface-enhanced Raman spectroscopy (SERS) was used to differentiate strains with distinct STs based on unique Raman spectral profiles. We then constructed and compared eight machine-learning models on SERS spectra to quickly identify bacterial STs. The results showed that the support vector machine model outperformed matrix-assisted laser desorption/ionization time-of-flight mass spectrometer in determining STs. This approach enables rapid identification of variants with different STs, supporting the early detection and control of nosocomial infections by this multidrug-resistant pathogen.

摘要

未标注

细菌菌株的快速序列分型(ST)对于有效的医院感染控制和减轻医院病原体的传播至关重要,例如 。虽然当前的分型方法在识别菌株方面准确,但由于其耗时的特性,在临床环境中往往不实用。本研究开发了一种新方法,将表面增强拉曼光谱(SERS)与机器学习(ML)算法相结合,以基于SERS光谱构建用于序列分型的预测模型。目的是评估这种综合方法对菌株进行高效序列分型的可行性。2013年至2023年间从一家医院收集了临床分离的菌株(n = 267)。基于多位点序列分型,鉴定出39种 的ST型。然后,构建了所有这些菌株的SERS光谱数据库,并开发了基于八种ML算法的预测模型来预测SERS信号以确定它们的ST型,其中支持向量机(SVM)模型表现最佳(五折交叉验证 = 99.74%)。将SERS - SVM方法的分型能力与基质辅助激光解吸/电离飞行时间(MALDI - TOF)用于序列分型的能力进行了比较,证实了SERS - SVM优于MALDI - TOF质谱仪。这项初步研究为在临床实验室中采用SERS - ML方法快速鉴定菌株类型奠定了基础,有助于控制细菌病原体的传播。有必要进行进一步研究以评估其在医院监测系统中的潜力,特别是用于快速识别医院内的暴发。

重要性

细菌病原体的快速准确序列分型(ST)对于控制医疗机构内的传播至关重要。 感染以其高传播性和耐药性而闻名,在医院感染控制中构成重大挑战。在本研究中,表面增强拉曼光谱(SERS)被用于基于独特的拉曼光谱特征区分具有不同ST型的菌株。然后,我们在SERS光谱上构建并比较了八个机器学习模型以快速识别细菌ST型。结果表明,支持向量机模型在确定 ST型方面优于基质辅助激光解吸/电离飞行时间质谱仪。这种方法能够快速识别具有不同ST型的 变体,支持对这种多重耐药病原体引起的医院感染进行早期检测和控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a839/11878063/403cf34b137e/spectrum.01425-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验