Patel Yesha, Helmann John D
Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA.
Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA.
Cell Rep. 2025 Feb 25;44(2):115268. doi: 10.1016/j.celrep.2025.115268. Epub 2025 Feb 4.
Resistance to diverse antibiotics can result from mutations in RNA polymerase (RNAP), but the underlying mechanisms remain poorly understood. In this study, we compare two Bacillus subtilis RNAP mutations: one in β' (rpoC G1122D) that increases resistance to cefuroxime (CEF; a model β-lactam) and one in β (rpoB H482Y) that increases sensitivity. CEF resistance is mediated by a decrease in branched-chain amino acid (BCAA), methionine, and pyrimidine pathways. These same pathways are upregulated by CEF, and their derepression increases CEF sensitivity and antibiotic-induced production of reactive oxygen species. The CEF-resistant rpoC G1122D mutant evades these metabolic perturbations, and repression of the BCAA and pyrimidine pathways may function to restrict membrane biogenesis, which is beneficial when cell wall synthesis is impaired. These findings provide a vivid example of how RNAP mutations, which commonly arise in response to diverse selection conditions, can rewire cellular metabolism to enhance fitness.
对多种抗生素产生耐药性可能源于RNA聚合酶(RNAP)的突变,但其潜在机制仍知之甚少。在本研究中,我们比较了枯草芽孢杆菌的两种RNAP突变:一种在β'亚基(rpoC G1122D)中,可增加对头孢呋辛(CEF;一种典型的β-内酰胺类抗生素)的耐药性;另一种在β亚基(rpoB H482Y)中,可增加敏感性。CEF耐药性是由支链氨基酸(BCAA)、蛋氨酸和嘧啶途径的减少介导的。这些相同的途径会被CEF上调,其去抑制作用会增加CEF敏感性以及抗生素诱导的活性氧生成。耐CEF的rpoC G1122D突变体可避免这些代谢紊乱,BCAA和嘧啶途径的抑制可能起到限制膜生物合成的作用,这在细胞壁合成受损时是有益的。这些发现生动地说明了常见于多种选择条件下的RNAP突变如何重塑细胞代谢以增强适应性。