Cai Xinyin, Shadike Zulipiya, Wang Nan, Li Xun-Lu, Wang Yong, Zheng Qinfeng, Zhang Yixiao, Lin Weixiao, Li Linsen, Chen Liwei, Shen Shuiyun, Hu Enyuan, Zhou Yong-Ning, Zhang Junliang
Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States.
J Am Chem Soc. 2025 Feb 19;147(7):5860-5870. doi: 10.1021/jacs.4c14587. Epub 2025 Feb 5.
Lattice oxygen redox (LOR) in P2-type layered oxides is an effective strategy to break through the limit of energy density of conventional cathodes due to its high redox potential (>4 V vs Na/Na) as well as extra capacity. Nevertheless, LOR-induced local structure distortion and irreversible phase transitions cause serious electrochemical performance degradation, hindering practical applications. Herein, we propose that the generation of the OP4 phase can be replaced with the Z phase by introducing the Sb element with a higher ionic potential and strong covalent bonds within the TMO octahedron. Z phase transition is realized by constraining interlayer slipping between adjacent transition metal (TM) layers compared to OP4, which reduces the strain in the layered structure, lowers the Na diffusion energy barrier, and creates more efficient Na diffusion channels. Consequently, Sb-substituted oxides demonstrate excellent kinetics, rate capability (79 mAh g at 1 A g) in half cells, and a high energy density of 487 Wh kg (on cathode) in full cells.
P2型层状氧化物中的晶格氧氧化还原(LOR)是突破传统阴极能量密度限制的有效策略,这归因于其高氧化还原电位(相对于Na/Na>4 V)以及额外的容量。然而,LOR引起的局部结构畸变和不可逆相变会导致严重的电化学性能退化,阻碍其实际应用。在此,我们提出通过在TMO八面体中引入具有更高离子势和强共价键的Sb元素,可将OP4相的生成替换为Z相。与OP4相比,通过限制相邻过渡金属(TM)层之间的层间滑移实现Z相转变,这减少了层状结构中的应变,降低了Na扩散能垒,并创建了更高效的Na扩散通道。因此,Sb取代的氧化物表现出优异的动力学性能、半电池中的倍率性能(1 A g下为79 mAh g)以及全电池中487 Wh kg(基于阴极)的高能量密度。