Ciuba Katarzyna, Piotrowska Aleksandra, Chaudhury Debadeep, Dehingia Bondita, Duński Eryk, Behr Rüdiger, Soroczyńska Karolina, Czystowska-Kuźmicz Małgorzata, Abbas Misbah, Bulanda Edyta, Gawlik-Zawiślak Sylwia, Pietrzak Sylwia, Figiel Izabela, Włodarczyk Jakub, Verkhratsky Alexei, Niedbała Marcin, Kaspera Wojciech, Wypych Tomasz, Wilczyński Bartosz, Pękowska Aleksandra
Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
German Primate Center-Leibniz Institute for Primate Research, Platform Stem Cell Biology and Regeneration, Kellnerweg 4, 37077 Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Lower Saxony, 37077 Göttingen, Germany.
Cell Stem Cell. 2025 Mar 6;32(3):426-444.e14. doi: 10.1016/j.stem.2024.12.011. Epub 2025 Feb 4.
Astrocytes contribute to the development and regulation of the higher-level functions of the brain, the critical targets of evolution. However, how astrocytes evolve in primates is unsettled. Here, we obtain human, chimpanzee, and macaque induced pluripotent stem-cell-derived astrocytes (iAstrocytes). Human iAstrocytes are bigger and more complex than the non-human primate iAstrocytes. We identify new loci contributing to the increased human astrocyte. We show that genes and pathways implicated in long-range intercellular signaling are activated in the human iAstrocytes and partake in controlling iAstrocyte complexity. Genes downregulated in human iAstrocytes frequently relate to neurological disorders and were decreased in adult brain samples. Through regulome analysis and machine learning, we uncover that functional activation of enhancers coincides with a previously unappreciated, pervasive gain of "stripe" transcription factor binding sites. Altogether, we reveal the transcriptomic signature of primate astrocyte evolution and a mechanism driving the acquisition of the regulatory potential of enhancers.
星形胶质细胞有助于大脑高级功能的发育和调节,而大脑高级功能是进化的关键目标。然而,星形胶质细胞在灵长类动物中是如何进化的仍未明确。在此,我们获得了人类、黑猩猩和猕猴诱导多能干细胞衍生的星形胶质细胞(iAstrocytes)。人类iAstrocytes比非人类灵长类iAstrocytes更大且更复杂。我们鉴定出了导致人类星形胶质细胞增多的新基因座。我们发现,与长距离细胞间信号传导相关的基因和通路在人类iAstrocytes中被激活,并参与控制iAstrocyte的复杂性。在人类iAstrocytes中下调的基因经常与神经疾病相关,并且在成人大脑样本中减少。通过调控组分析和机器学习,我们发现增强子的功能激活与之前未被认识到的、普遍存在的“条纹”转录因子结合位点增加相吻合。总之,我们揭示了灵长类星形胶质细胞进化的转录组特征以及一种驱动增强子调控潜能获得的机制。