Nolbrant Sara, Wallace Jenelle L, Ding Jingwen, Zhu Tianjia, Sevetson Jess L, Kajtez Janko, Baldacci Isabella A, Corrigan Emily K, Hoglin Kaylynn, McMullen Reed, Schmitz Matthew T, Breevoort Arnar, Swope Dani, Wu Fengxia, Pavlovic Bryan J, Salama Sofie R, Kirkeby Agnete, Huang Hao, Schaefer Nathan K, Pollen Alex A
The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
bioRxiv. 2024 Nov 15:2024.11.14.623592. doi: 10.1101/2024.11.14.623592.
The disproportionate expansion of telencephalic structures during human evolution involved tradeoffs that imposed greater connectivity and metabolic demands on midbrain dopaminergic neurons. Despite the central role of dopaminergic neurons in human-enriched disorders, molecular specializations associated with human-specific features and vulnerabilities of the dopaminergic system remain unexplored. Here, we establish a phylogeny-in-a-dish approach to examine gene regulatory evolution by differentiating pools of human, chimpanzee, orangutan, and macaque pluripotent stem cells into ventral midbrain organoids capable of forming long-range projections, spontaneous activity, and dopamine release. We identify human-specific gene expression changes related to axonal transport of mitochondria and reactive oxygen species buffering and candidate - and -regulatory mechanisms underlying gene expression divergence. Our findings are consistent with a model of evolved neuroprotection in response to tradeoffs related to brain expansion and could contribute to the discovery of therapeutic targets and strategies for treating disorders involving the dopaminergic system.
在人类进化过程中,端脑结构的过度扩张涉及到一些权衡,这些权衡对中脑多巴胺能神经元施加了更大的连接性和代谢需求。尽管多巴胺能神经元在人类特有的疾病中起着核心作用,但与多巴胺能系统的人类特异性特征和易损性相关的分子特化仍未被探索。在这里,我们建立了一种“培养皿中的系统发育”方法,通过将人类、黑猩猩、猩猩和猕猴多能干细胞池分化为能够形成长距离投射、自发活动和多巴胺释放的腹侧中脑类器官,来研究基因调控进化。我们确定了与线粒体轴突运输和活性氧缓冲相关的人类特异性基因表达变化,以及基因表达差异背后的候选顺式和反式调控机制。我们的发现与一种进化的神经保护模型一致,该模型是为了应对与大脑扩张相关的权衡,并且可能有助于发现治疗涉及多巴胺能系统疾病的治疗靶点和策略。