Suppr超能文献

拓扑结构驱动的跨膜蛋白S-棕榈酰化修饰发现

Topology-driven discovery of transmembrane protein S-palmitoylation.

作者信息

Forrester Michael T, Egol Jacob R, Ozbay Sinan, Waddell Farrah D, Singh Rohit, Tata Purushothama Rao

机构信息

Division of Pulmonary, Allergy and Critical Care Medicine, Duke University School of Medicine, Durham, North Carolina, USA.

Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA.

出版信息

J Biol Chem. 2025 Mar;301(3):108259. doi: 10.1016/j.jbc.2025.108259. Epub 2025 Feb 3.

Abstract

Protein S-palmitoylation is a reversible lipophilic posttranslational modification regulating diverse signaling pathways. Within transmembrane proteins (TMPs), S-palmitoylation is implicated in conditions from inflammatory disorders to respiratory viral infections. Many small-scale experiments have observed S-palmitoylation at juxtamembrane Cys residues. However, most large-scale S-palmitoyl discovery efforts rely on trypsin-based proteomics within which hydrophobic juxtamembrane regions are likely underrepresented. Machine learning-by virtue of its freedom from experimental constraints-is particularly well suited to address this discovery gap surrounding TMP S-palmitoylation. Utilizing a UniProt-derived feature set, a gradient-boosted machine learning tool (TopoPalmTree) was constructed and applied to a holdout dataset of viral S-palmitoylated proteins. Upon application to the mouse TMP proteome, 1591 putative S-palmitoyl sites (i.e. not listed in SwissPalm or UniProt) were identified. Two lung-expressed S-palmitoyl candidates (synaptobrevin Vamp5 and water channel Aquaporin-5) were experimentally assessed, as were three Type I transmembrane proteins (Cadm4, Chodl, and Havcr2). Finally, TopoPalmTree was used for the rational design of an S-palmitoyl site on KDEL-Receptor 2. This readily interpretable model aligns the innumerable small-scale experiments observing juxtamembrane S-palmitoylation into a proteomic tool for TMP S-palmitoyl discovery and design, thus facilitating future investigations of this important modification.

摘要

蛋白质S-棕榈酰化是一种可逆的亲脂性翻译后修饰,可调节多种信号通路。在跨膜蛋白(TMP)中,S-棕榈酰化与从炎症性疾病到呼吸道病毒感染等各种情况有关。许多小规模实验已观察到近膜半胱氨酸残基处的S-棕榈酰化。然而,大多数大规模的S-棕榈酰化发现工作依赖于基于胰蛋白酶的蛋白质组学,其中疏水性近膜区域可能代表性不足。机器学习因其不受实验限制,特别适合解决围绕TMP S-棕榈酰化的这一发现差距。利用源自UniProt的特征集,构建了一种梯度增强机器学习工具(TopoPalmTree),并将其应用于病毒S-棕榈酰化蛋白的保留数据集。将其应用于小鼠TMP蛋白质组时,鉴定出1591个假定的S-棕榈酰化位点(即未列于SwissPalm或UniProt中的位点)。对两个肺表达的S-棕榈酰化候选蛋白(突触小泡蛋白Vamp5和水通道蛋白Aquaporin-5)以及三个I型跨膜蛋白(Cadm4、Chodl和Havcr2)进行了实验评估。最后,TopoPalmTree用于合理设计KDEL受体2上的一个S-棕榈酰化位点。这个易于解释的模型将无数观察近膜S-棕榈酰化的小规模实验整合到一个用于TMP S-棕榈酰化发现和设计的蛋白质组学工具中,从而促进对这一重要修饰的未来研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6001/11923826/f14122d90437/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验