Zhao Yanming, Wang Xinying, Lei Qianyan, Zhang Xiaoyan, Wang Yubei, Ji Huijia, Ma Chongyang, Wang Pengcheng, Song Chun-Peng, Zhu Xiaohong
State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China.
New Phytol. 2025 Apr;246(1):158-175. doi: 10.1111/nph.20425. Epub 2025 Feb 5.
Mitochondria support plant growth and adaptation via energy production and signaling pathways. However, how mitochondria control the transition between growth and stress response is largely unknown in plants. Using molecular approaches, we identified the histone H3K4me3 demethylase JMJ15 and the transcription factor CRF6 as targets of SnRK1 in Arabidopsis. By analyzing antimycin A (AA)-triggered mitochondrial stress, we explored how SnRK1, JMJ15, and CRF6 form a regulatory module that gauges mitochondrial status to balance growth and the oxidative stress response. SnRK1a1, a catalytic α-subunit of SnRK1, phosphorylates and destabilizes JMJ15 to inhibit its H3K4me3 demethylase activity. While SnRK1a1 does not phosphorylate CRF6, it promotes its degradation via the proteasome pathway. CRF6 interacts with JMJ15 and prevents its SnRK1a1 phosphorylation-dependent degradation, forming an antagonistic feedback loop. SnRK1a1, JMJ15, and CRF6 are required for transcriptional reprogramming in response to AA stress. The transcriptome profiles of jmj15 and crf6 mutants were highly correlated with those of plants overexpressing SnRK1a1 under both normal and AA stress conditions. Genetic analysis revealed that CRF6 acts downstream of SnRK1 and JMJ15. Our findings identify the SnRK1-JMJ15-CRF6 module that integrates energy and mitochondrial signaling for the growth-defense trade-off, highlighting an epigenetic mechanism underlying mitonuclear communication.
线粒体通过能量产生和信号通路支持植物生长与适应。然而,在植物中,线粒体如何控制生长与应激反应之间的转换在很大程度上尚不清楚。利用分子方法,我们在拟南芥中鉴定出组蛋白H3K4me3去甲基化酶JMJ15和转录因子CRF6是SnRK1的靶标。通过分析抗霉素A(AA)引发的线粒体应激,我们探究了SnRK1、JMJ15和CRF6如何形成一个调节模块,该模块评估线粒体状态以平衡生长和氧化应激反应。SnRK1的催化α亚基SnRK1a1使JMJ15磷酸化并使其不稳定,从而抑制其H3K4me3去甲基化酶活性。虽然SnRK1a1不使CRF6磷酸化,但它通过蛋白酶体途径促进其降解。CRF6与JMJ15相互作用,防止其因SnRK1a1磷酸化而降解,形成一个拮抗反馈环。SnRK1a1、JMJ15和CRF6是响应AA应激进行转录重编程所必需的。在正常和AA应激条件下,jmj15和crf6突变体的转录组图谱与过表达SnRK1a1的植物高度相关。遗传分析表明,CRF6在SnRK1和JMJ15的下游起作用。我们的研究结果确定了SnRK1-JMJ15-CRF6模块,该模块整合能量和线粒体信号以实现生长-防御权衡,突出了线粒体-细胞核通讯背后的一种表观遗传机制。