Suppr超能文献

基于特征融合的红外弱小目标检测

Infrared dim tiny-sized target detection based on feature fusion.

作者信息

Zhang Peng, Jing Yaman, Liu Guodong, Chen Ziyang, Wu Xiaoyan, Sasaki Osami, Pu Jixiong

机构信息

College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, 361021, Fujian, China.

Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China.

出版信息

Sci Rep. 2025 Feb 5;15(1):4355. doi: 10.1038/s41598-025-88956-8.

Abstract

Detection of infrared objects is essential for applications ranging from remote sensing to thermal imaging. In certain instances, such as when the infrared target is situated at a considerable distance from the detector, the detected object exhibits diminutive dimensions with a concurrently low signal intensity, leading to a challenge in achieving precision in object detection. In this paper, we propose a dual-layer omnidirectional target enhancement (DODTE) module to address the issue of low contrast, which causes the target to be submerged in the background and lose its position information. The module aims to extract and enhance the position information of the target, serving as a feature map for subsequent guidance. Furthermore, to tackle the problem of the fuzzy and ambiguous shape of the target caused by a weak signal and tiny dimension, a residual-based pyramid-like (RBPL) module is designed, which extracts the deep information (i.e. the shape information) from the images to compensate for the lack of expressive ability of the fixed convolution kernel for shape information. These two main modules are employed as the core to form a feature fusion network to realize the detection of infrared dim tiny-sized targets. The comparison of the proposed network with other algorithms are performed on open-source dataset and experimentally generated infrared images. The quantitative evaluation metrics, including IOUs and F1 scores, validate the outperformance of the proposed network. Furthermore, ablation experiments demonstrate that the proposed two modules can effectively tackle the tiny-size, low contrast and dark intensity issues, providing a solution for detecting dim and small-size infrared targets.

摘要

红外目标检测对于从遥感到热成像等一系列应用至关重要。在某些情况下,例如当红外目标与探测器相距相当远时,检测到的物体尺寸很小且信号强度同时较低,这给实现精确的目标检测带来了挑战。在本文中,我们提出了一种双层全向目标增强(DODTE)模块来解决低对比度问题,低对比度会导致目标淹没在背景中并丢失其位置信息。该模块旨在提取并增强目标的位置信息,作为后续引导的特征图。此外,为了解决由弱信号和微小尺寸导致的目标形状模糊和不明确的问题,设计了一种基于残差的金字塔状(RBPL)模块,该模块从图像中提取深度信息(即形状信息),以弥补固定卷积核对形状信息表达能力的不足。这两个主要模块作为核心构建一个特征融合网络,以实现对红外弱小目标的检测。在所提出的网络与其他算法之间的比较是在开源数据集和实验生成的红外图像上进行的。包括交并比(IOU)和F1分数在内的定量评估指标验证了所提出网络的优越性。此外,消融实验表明所提出的两个模块能够有效地解决小尺寸、低对比度和暗强度问题,为检测微弱和小尺寸红外目标提供了一种解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fdc/11799448/fbb06a526225/41598_2025_88956_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验