Suppr超能文献

用于红外小目标检测的密集嵌套注意力网络

Dense Nested Attention Network for Infrared Small Target Detection.

作者信息

Li Boyang, Xiao Chao, Wang Longguang, Wang Yingqian, Lin Zaiping, Li Miao, An Wei, Guo Yulan

出版信息

IEEE Trans Image Process. 2023;32:1745-1758. doi: 10.1109/TIP.2022.3199107. Epub 2023 Mar 14.

Abstract

Single-frame infrared small target (SIRST) detection aims at separating small targets from clutter backgrounds. With the advances of deep learning, CNN-based methods have yielded promising results in generic object detection due to their powerful modeling capability. However, existing CNN-based methods cannot be directly applied to infrared small targets since pooling layers in their networks could lead to the loss of targets in deep layers. To handle this problem, we propose a dense nested attention network (DNA-Net) in this paper. Specifically, we design a dense nested interactive module (DNIM) to achieve progressive interaction among high-level and low-level features. With the repetitive interaction in DNIM, the information of infrared small targets in deep layers can be maintained. Based on DNIM, we further propose a cascaded channel and spatial attention module (CSAM) to adaptively enhance multi-level features. With our DNA-Net, contextual information of small targets can be well incorporated and fully exploited by repetitive fusion and enhancement. Moreover, we develop an infrared small target dataset (namely, NUDT-SIRST) and propose a set of evaluation metrics to conduct comprehensive performance evaluation. Experiments on both public and our self-developed datasets demonstrate the effectiveness of our method. Compared to other state-of-the-art methods, our method achieves better performance in terms of probability of detection ( P ), false-alarm rate ( F ), and intersection of union ( IoU ).

摘要

单帧红外小目标(SIRST)检测旨在将小目标与杂乱背景分离。随着深度学习的发展,基于卷积神经网络(CNN)的方法因其强大的建模能力在通用目标检测中取得了有前景的成果。然而,现有的基于CNN的方法不能直接应用于红外小目标,因为其网络中的池化层可能导致深层目标信息丢失。为解决这个问题,我们在本文中提出了一种密集嵌套注意力网络(DNA-Net)。具体而言,我们设计了一个密集嵌套交互模块(DNIM)来实现高层和低层特征之间的递进交互。通过DNIM中的重复交互,可以保留深层红外小目标的信息。基于DNIM,我们进一步提出了一种级联通道和空间注意力模块(CSAM)来自适应增强多级特征。借助我们的DNA-Net,小目标的上下文信息可以通过重复融合和增强得到很好的整合和充分利用。此外,我们开发了一个红外小目标数据集(即NUDT-SIRST),并提出了一组评估指标来进行全面的性能评估。在公共数据集和我们自行开发的数据集上的实验都证明了我们方法的有效性。与其他现有先进方法相比,我们的方法在检测概率(P)、误报率(F)和交并比(IoU)方面取得了更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验