Suppr超能文献

基于归一化互信息的广义耦合矩阵张量分解方法用于同步脑电图-功能磁共振成像数据分析

Generalized Coupled Matrix Tensor Factorization Method Based on Normalized Mutual Information for Simultaneous EEG-fMRI Data Analysis.

作者信息

Rabiei Zahra, Kordy Hussain Montazery

机构信息

Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran.

出版信息

Neuroinformatics. 2025 Feb 6;23(2):19. doi: 10.1007/s12021-025-09716-7.

Abstract

The complementary properties of both modalities can be exploited through the fusion of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. Thus, a joint analysis of both modalities can be used in brain studies to estimate brain activity's shared and unshared components. This study introduces a comprehensive approach for jointly analyzing EEG and fMRI data using the advanced coupled matrix tensor factorization (ACMTF) method. The similarity of the components based on normalized mutual information (NMI) was defined to overcome the restrictive equality assumption of shared components in the common dimension of the ACMTF method. Because the mutual information (MI) measure can identify both linear and nonlinear relationships between the components, the proposed method can be viewed as a generalization of the ACMTF method; thus, it is called the generalized coupled matrix tensor factorization (GCMTF). The proposed GCMTF method was applied to simulated data, in which the components exhibited a nonlinear relationship. The results demonstrate that the average match score increased by 23.46% compared with the ACMTF model, even with different noise levels. Furthermore, applying this method to real data from an auditory oddball paradigm demonstrated that three shared components with frequency responses in the alpha and theta bands were identified. The proposed MI-based method cannot only extract shared components with any nonlinear or linear relationship but can also identify more active brain areas corresponding to an auditory oddball paradigm compared to ACMTF and other similar methods.

摘要

通过融合脑电图(EEG)和功能磁共振成像(fMRI)数据,可以利用这两种模态的互补特性。因此,在脑研究中可以对这两种模态进行联合分析,以估计大脑活动的共享和非共享成分。本研究介绍了一种使用先进的耦合矩阵张量分解(ACMTF)方法对EEG和fMRI数据进行联合分析的综合方法。基于归一化互信息(NMI)定义了成分的相似性,以克服ACMTF方法公共维度中共享成分的严格相等假设。由于互信息(MI)度量可以识别成分之间的线性和非线性关系,因此所提出的方法可以看作是ACMTF方法的推广;因此,它被称为广义耦合矩阵张量分解(GCMTF)。所提出的GCMTF方法应用于模拟数据,其中成分呈现非线性关系。结果表明,即使在不同噪声水平下,与ACMTF模型相比,平均匹配分数提高了23.46%。此外,将该方法应用于听觉oddball范式的真实数据表明,识别出了在α和θ频段具有频率响应的三个共享成分。所提出的基于MI的方法不仅可以提取具有任何非线性或线性关系的共享成分,而且与ACMTF和其他类似方法相比,还可以识别出与听觉oddball范式相对应的更活跃的脑区。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验