Suppr超能文献

单化合物数据补充以增强发酵特异性拉曼光谱模型的可转移性。

Single compound data supplementation to enhance transferability of fermentation specific Raman spectroscopy models.

作者信息

Klaverdijk Maarten, Ottens Marcel, Klijn Marieke E

机构信息

Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, Delft, 2629 HZ, The Netherlands.

出版信息

Anal Bioanal Chem. 2025 Apr;417(9):1873-1884. doi: 10.1007/s00216-025-05768-5. Epub 2025 Feb 6.

Abstract

Raman spectroscopy is a valuable analytical tool for real-time analyte quantification in fermentation processes. Quantification is performed with chemometric models that translate Raman spectra into concentration values, which are typically calibrated with process data from multiple comparable fermentations. However, process-specific models underperform for minor process variation(s) or different operation modes due to the integration of cross-correlations, resulting in low target analyte specificity. Thus, model transferability is poor and labor-intensive (re-)calibration of models is required for related processes. In this work, partial least-squares models for glucose, ethanol, and biomass were calibrated with Saccharomyces cerevisiae batch fermentation data and subsequently transferred to a fed-batch operation. To enhance model transferability without additional process runs, single compound data supplementation was performed. The supplemented models increased overall target analyte specificity and demonstrated sufficient prediction accuracy for the fed-batch process (root-mean-square errors of prediction (RMSEP) of 3.06 mM, 8.65 mM, and 0.99 g/L for glucose, ethanol, and biomass), while maintaining high prediction accuracy for the batch process (RMSEP of 1.71 mM, 4.20 mM, and 0.17 g/L for glucose, ethanol, and biomass). This work showcases that process data in combination with single compound spectra is a fast and efficient strategy to apply Raman spectroscopy for real-time process monitoring across related processes.

摘要

拉曼光谱是发酵过程中实时分析物定量的一种有价值的分析工具。定量分析通过化学计量学模型进行,该模型将拉曼光谱转化为浓度值,这些浓度值通常用来自多个可比发酵过程的数据进行校准。然而,由于交叉相关性的整合,特定于某个过程的模型在处理较小的过程变化或不同操作模式时表现不佳,导致目标分析物的特异性较低。因此,模型的可转移性较差,并且对于相关过程需要进行劳动强度大的(重新)校准。在这项工作中,利用酿酒酵母分批发酵数据校准了葡萄糖、乙醇和生物量的偏最小二乘模型,随后将其转移到补料分批操作中。为了在不进行额外过程运行的情况下提高模型的可转移性,进行了单一化合物数据补充。补充后的模型提高了整体目标分析物的特异性,并对补料分批过程显示出足够的预测准确性(葡萄糖、乙醇和生物量的预测均方根误差(RMSEP)分别为3.06 mM、8.65 mM和0.99 g/L),同时保持了对分批过程的高预测准确性(葡萄糖、乙醇和生物量的RMSEP分别为1.71 mM、4.20 mM和0.17 g/L)。这项工作表明,过程数据与单一化合物光谱相结合是一种快速有效的策略,可将拉曼光谱应用于相关过程的实时过程监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25c/11914363/4e4618cf229d/216_2025_5768_Fig1_HTML.jpg

相似文献

1
Single compound data supplementation to enhance transferability of fermentation specific Raman spectroscopy models.
Anal Bioanal Chem. 2025 Apr;417(9):1873-1884. doi: 10.1007/s00216-025-05768-5. Epub 2025 Feb 6.
2
Real-time monitoring of high-gravity corn mash fermentation using in situ raman spectroscopy.
Biotechnol Bioeng. 2013 Jun;110(6):1654-62. doi: 10.1002/bit.24849. Epub 2013 Feb 7.
3
Raman spectroscopy and chemometrics for on-line control of glucose fermentation by Saccharomyces cerevisiae.
Biotechnol Prog. 2012 Nov-Dec;28(6):1598-604. doi: 10.1002/btpr.1615. Epub 2012 Sep 21.
4
Inline noninvasive Raman monitoring and feedback control of glucose concentration during ethanol fermentation.
Biotechnol Prog. 2019 Sep;35(5):e2848. doi: 10.1002/btpr.2848. Epub 2019 Jun 18.
5
Monitoring multiple components in vinegar fermentation using Raman spectroscopy.
Food Chem. 2013 Dec 15;141(4):4333-43. doi: 10.1016/j.foodchem.2013.06.122. Epub 2013 Jul 4.
6
Monitoring a bioprocess for ethanol production using FT-MIR and FT-Raman spectroscopy.
J Ind Microbiol Biotechnol. 2001 Apr;26(4):185-90. doi: 10.1038/sj.jim.7000124.
7
Quantitative monitoring of yeast fermentation using Raman spectroscopy.
Anal Bioanal Chem. 2014 Aug;406(20):4911-9. doi: 10.1007/s00216-014-7897-2. Epub 2014 Jul 5.
9
10
In situ near infrared spectroscopy monitoring of cyprosin production by recombinant Saccharomyces cerevisiae strains.
J Biotechnol. 2014 Oct 20;188:148-57. doi: 10.1016/j.jbiotec.2014.07.454. Epub 2014 Aug 10.

引用本文的文献

本文引用的文献

1
Automated Raman feed-back control of multiple supplemental feeds to enable an intensified high inoculation density fed-batch platform process.
Bioprocess Biosyst Eng. 2023 Oct;46(10):1457-1470. doi: 10.1007/s00449-023-02912-2. Epub 2023 Aug 26.
2
Applications of bio-capacitance to cell culture manufacturing.
Biotechnol Adv. 2022 Dec;61:108048. doi: 10.1016/j.biotechadv.2022.108048. Epub 2022 Oct 5.
3
Advancing Raman model calibration for perfusion bioprocesses using spiked harvest libraries.
Biotechnol J. 2022 Nov;17(11):e2200184. doi: 10.1002/biot.202200184. Epub 2022 Aug 7.
5
The role of Raman spectroscopy in biopharmaceuticals from development to manufacturing.
Anal Bioanal Chem. 2022 Jan;414(2):969-991. doi: 10.1007/s00216-021-03727-4. Epub 2021 Oct 20.
6
Technology outlook for real-time quality attribute and process parameter monitoring in biopharmaceutical development-A review.
Biotechnol Bioeng. 2020 Oct;117(10):3182-3198. doi: 10.1002/bit.27461. Epub 2020 Jul 1.
8
Analysis of chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell culture.
Biotechnol Prog. 2020 Jul;36(4):e2977. doi: 10.1002/btpr.2977. Epub 2020 Feb 17.
9
Inline noninvasive Raman monitoring and feedback control of glucose concentration during ethanol fermentation.
Biotechnol Prog. 2019 Sep;35(5):e2848. doi: 10.1002/btpr.2848. Epub 2019 Jun 18.
10
Raman Optical Activity and Raman spectroscopy of carbohydrates in solution.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 Jan 5;206:597-612. doi: 10.1016/j.saa.2018.08.017. Epub 2018 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验