Klaverdijk Maarten, Ottens Marcel, Klijn Marieke E
Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, Delft, 2629 HZ, The Netherlands.
Anal Bioanal Chem. 2025 Apr;417(9):1873-1884. doi: 10.1007/s00216-025-05768-5. Epub 2025 Feb 6.
Raman spectroscopy is a valuable analytical tool for real-time analyte quantification in fermentation processes. Quantification is performed with chemometric models that translate Raman spectra into concentration values, which are typically calibrated with process data from multiple comparable fermentations. However, process-specific models underperform for minor process variation(s) or different operation modes due to the integration of cross-correlations, resulting in low target analyte specificity. Thus, model transferability is poor and labor-intensive (re-)calibration of models is required for related processes. In this work, partial least-squares models for glucose, ethanol, and biomass were calibrated with Saccharomyces cerevisiae batch fermentation data and subsequently transferred to a fed-batch operation. To enhance model transferability without additional process runs, single compound data supplementation was performed. The supplemented models increased overall target analyte specificity and demonstrated sufficient prediction accuracy for the fed-batch process (root-mean-square errors of prediction (RMSEP) of 3.06 mM, 8.65 mM, and 0.99 g/L for glucose, ethanol, and biomass), while maintaining high prediction accuracy for the batch process (RMSEP of 1.71 mM, 4.20 mM, and 0.17 g/L for glucose, ethanol, and biomass). This work showcases that process data in combination with single compound spectra is a fast and efficient strategy to apply Raman spectroscopy for real-time process monitoring across related processes.
拉曼光谱是发酵过程中实时分析物定量的一种有价值的分析工具。定量分析通过化学计量学模型进行,该模型将拉曼光谱转化为浓度值,这些浓度值通常用来自多个可比发酵过程的数据进行校准。然而,由于交叉相关性的整合,特定于某个过程的模型在处理较小的过程变化或不同操作模式时表现不佳,导致目标分析物的特异性较低。因此,模型的可转移性较差,并且对于相关过程需要进行劳动强度大的(重新)校准。在这项工作中,利用酿酒酵母分批发酵数据校准了葡萄糖、乙醇和生物量的偏最小二乘模型,随后将其转移到补料分批操作中。为了在不进行额外过程运行的情况下提高模型的可转移性,进行了单一化合物数据补充。补充后的模型提高了整体目标分析物的特异性,并对补料分批过程显示出足够的预测准确性(葡萄糖、乙醇和生物量的预测均方根误差(RMSEP)分别为3.06 mM、8.65 mM和0.99 g/L),同时保持了对分批过程的高预测准确性(葡萄糖、乙醇和生物量的RMSEP分别为1.71 mM、4.20 mM和0.17 g/L)。这项工作表明,过程数据与单一化合物光谱相结合是一种快速有效的策略,可将拉曼光谱应用于相关过程的实时过程监测。