Suppr超能文献

应用于拉曼光谱法监测细胞培养关键代谢物的化学计量学模型分析

Analysis of chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell culture.

作者信息

Rafferty Carl, Johnson Kjell, O'Mahony Jim, Burgoyne Barbara, Rea Rosemary, Balss Karin M

机构信息

BioTherapeutic Development, Janssen Sciences Ireland UC, Cork, Ireland.

Biological Sciences, Cork Institute of Technology, Cork, Ireland.

出版信息

Biotechnol Prog. 2020 Jul;36(4):e2977. doi: 10.1002/btpr.2977. Epub 2020 Feb 17.

Abstract

The Food and Drug Administration (FDA) initiative of Process Analytical Technology (PAT) encourages the monitoring of biopharmaceutical manufacturing processes by innovative solutions. Raman spectroscopy and the chemometric modeling tool partial least squares (PLS) have been applied to this aim for monitoring cell culture process variables. This study compares the chemometric modeling methods of Support Vector Machine radial (SVMr), Random Forests (RF), and Cubist to the commonly used linear PLS model for predicting cell culture components-glucose, lactate, and ammonia. This research is performed to assess whether the use of PLS as standard practice is justified for chemometric modeling of Raman spectroscopy and cell culture data. Model development data from five small-scale bioreactors (2 × 1 L and 3 × 5 L) using two Chinese hamster ovary (CHO) cell lines were used to predict against a manufacturing scale bioreactor (2,000 L). Analysis demonstrated that Cubist predictive models were better for average performance over PLS, SVMr, and RF for glucose, lactate, and ammonia. The root mean square error of prediction (RMSEP) of Cubist modeling was acceptable for the process concentration ranges of glucose (1.437 mM), lactate (2.0 mM), and ammonia (0.819 mM). Interpretation of variable importance (VI) results theorizes the potential advantages of Cubist modeling in avoiding interference of Raman spectral peaks. Predictors/Raman wavenumbers (cm ) of interest for individual variables are X1139-X1141 for glucose, X846-X849 for lactate, and X2941-X2943 for ammonia. These results demonstrate that other beneficial chemometric models are available for use in monitoring cell culture with Raman spectroscopy.

摘要

美国食品药品监督管理局(FDA)的过程分析技术(PAT)倡议鼓励通过创新解决方案对生物制药生产过程进行监测。拉曼光谱和化学计量学建模工具偏最小二乘法(PLS)已应用于这一目标,以监测细胞培养过程变量。本研究将支持向量机径向基(SVMr)、随机森林(RF)和Cubist的化学计量学建模方法与常用的线性PLS模型进行比较,以预测细胞培养成分——葡萄糖、乳酸和氨。进行这项研究是为了评估将PLS作为标准方法用于拉曼光谱和细胞培养数据的化学计量学建模是否合理。使用来自五个小型生物反应器(2×1 L和3×5 L)、两种中国仓鼠卵巢(CHO)细胞系的模型开发数据来预测一个生产规模的生物反应器(2000 L)。分析表明,对于葡萄糖、乳酸和氨,Cubist预测模型在平均性能上优于PLS、SVMr和RF。在葡萄糖(1.437 mM)、乳酸(2.0 mM)和氨(0.819 mM)的过程浓度范围内,Cubist建模的预测均方根误差(RMSEP)是可接受的。对变量重要性(VI)结果的解释从理论上说明了Cubist建模在避免拉曼光谱峰干扰方面的潜在优势。单个变量感兴趣的预测因子/拉曼波数(cm),葡萄糖为X1139 - X1141,乳酸为X846 - X849,氨为X2941 - X2943。这些结果表明,其他有益的化学计量学模型可用于通过拉曼光谱监测细胞培养。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验