Chemla Axel, Arena Giuseppe, Sacripanti Ginevra, Barmpa Kyriaki, Zagare Alise, Garcia Pierre, Gorgogietas Vyron, Antony Paul, Ohnmacht Jochen, Baron Alexandre, Jung Jaqueline, Lind-Holm Mogensen Frida, Michelucci Alessandro, Marzesco Anne-Marie, Buttini Manuel, Schmidt Thorsten, Grünewald Anne, Schwamborn Jens C, Krüger Rejko, Saraiva Cláudia
Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg.
Luxembourg Center of Neuropathology (LCNP), Laboratoire National de Santé, L-3555, Dudelange, Luxembourg.
Brain. 2025 Feb 6. doi: 10.1093/brain/awaf051.
The complex and heterogeneous nature of Parkinson's disease (PD) is still not fully understood, however, increasing evidence supports mitochondrial impairment as a major driver of neurodegeneration. Miro1, a mitochondrial GTPase encoded by the RHOT1 gene, is involved in mitochondrial transport, mitophagy and mitochondrial calcium buffering, and is therefore essential for maintaining mitochondrial homeostasis. Recently, Miro1 has been linked genetically and pathophysiologically to PD, further supported by the identification of heterozygous variants of Miro1 in patients. Herein, we used patient-derived cellular models alongside knock-in mice to investigate Miro1-dependent pathophysiological processes and molecular mechanisms underlying neurodegeneration in PD. Experimental work performed in induced pluripotent stem cells (iPSC)-derived models, including midbrain organoids and dopaminergic neuronal cell cultures from a PD patient carrying the p.R272Q Miro1 mutation as well as healthy and isogenic controls, indicated that the p.R272Q Miro1 mutation leads to increased oxidative stress, disrupted mitochondrial bioenergetics and altered cellular metabolism. This was accompanied by increased α-synuclein levels and a significant reduction of dopaminergic neurons. Moreover, the p.R272Q Miro1 mutation - located in the calcium-binding domain of the GTPase - disrupted calcium homeostasis. This resulted in the calcium-dependent activation of calpain proteases and the subsequent cleavage of α-synuclein. Knock-in mice expressing p.R285Q Miro1 (the orthologue of the human p.R272Q mutation) displayed accumulation of phosphorylated α-synuclein in the striatum and a significant loss of dopaminergic neurons in the substantia nigra, accompanied by behavioral alterations. These findings demonstrate that mutant Miro1 is sufficient to comprehensively model PD-relevant phenotypes in vitro and in vivo, reinforcing its pivotal role in PD pathogenesis.
帕金森病(PD)复杂且具有异质性,其本质仍未被完全理解,然而,越来越多的证据支持线粒体损伤是神经退行性变的主要驱动因素。Miro1是一种由RHOT1基因编码的线粒体GTP酶,参与线粒体运输、线粒体自噬和线粒体钙缓冲,因此对于维持线粒体稳态至关重要。最近,Miro1在基因和病理生理方面与PD相关联,患者中Miro1杂合变体的鉴定进一步支持了这一点。在此,我们使用患者来源的细胞模型以及基因敲入小鼠来研究PD中依赖Miro1的病理生理过程和神经退行性变的分子机制。在诱导多能干细胞(iPSC)衍生模型中进行的实验工作,包括来自携带p.R272Q Miro1突变的PD患者以及健康和同基因对照的中脑类器官和多巴胺能神经元细胞培养,表明p.R272Q Miro1突变导致氧化应激增加、线粒体生物能量学破坏和细胞代谢改变。这伴随着α-突触核蛋白水平的增加和多巴胺能神经元的显著减少。此外,位于GTP酶钙结合域的p.R272Q Miro1突变破坏了钙稳态。这导致钙蛋白酶的钙依赖性激活以及随后α-突触核蛋白的切割。表达p.R285Q Miro1(人类p.R272Q突变的同源物)的基因敲入小鼠在纹状体中显示磷酸化α-突触核蛋白的积累以及黑质中多巴胺能神经元的显著丧失,并伴有行为改变。这些发现表明,突变的Miro1足以在体外和体内全面模拟与PD相关的表型,强化了其在PD发病机制中的关键作用。