Xu Wei, Zhang Hua, Zhou Yu, Lu Taige, Li Yuting, Zhu Yixuan, Wei Caiyun, Zheng Jueting, Li Ruihao, Li Jing, Chen Lijue, Zhang Guanxin, Shi Jia, Liu Junyang, Zhang Deqing, Hong Wenjing
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China.
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
J Am Chem Soc. 2025 Feb 19;147(7):5879-5886. doi: 10.1021/jacs.4c14656. Epub 2025 Feb 7.
Inspired by the initial proposal of σ-bridged donor-acceptor (D-σ-A) single-molecule diodes in 1974, extensive studies over the past 50 years have explored various designs for π-conjugated D-π-A single-molecule diodes due to their feasible chemical synthesis and effective charge transfer. However, the rectification ratio of π-conjugated single-molecule diodes has been long-term limited by the challenge of asymmetric electronic coupling to induce the rectification effect. Here, we present a supramolecular diode constructed through an intramolecular π-π interaction-driven assembly strategy. The asymmetric transmission in this system is tunable via subangström mechanical control, resulting in a rectification ratio of up to 16. Electron transport studies reveal that this through-space D-π-π-A system constructed by the π-π stacking between pyrene () and naphthalenediimide () is crucial for achieving asymmetric currents under different bias polarization. Theoretical calculations suggest that the intermolecular destructive quantum interference not only enables a sharp variation in electron transmission but also facilitates asymmetric electronic energy shifts through mechanical stretching, significantly improving the rectification ratio. Our work provides a general approach to fabricating and modulating asymmetric molecular architectures through noncovalent supramolecular interactions, showcasing the potential of high-performance single-molecule rectifiers.
受1974年σ桥连供体-受体(D-σ-A)单分子二极管初步提议的启发,在过去50年里,由于其可行的化学合成和有效的电荷转移,广泛的研究探索了各种用于π共轭D-π-A单分子二极管的设计。然而,π共轭单分子二极管的整流比长期受到不对称电子耦合以诱导整流效应这一挑战的限制。在此,我们展示了一种通过分子内π-π相互作用驱动的组装策略构建的超分子二极管。该系统中的不对称传输可通过亚埃机械控制进行调节,从而实现高达16的整流比。电子输运研究表明,由芘()和萘二亚胺()之间的π-π堆积构建的这种空间D-π-π-A系统对于在不同偏置极化下实现不对称电流至关重要。理论计算表明,分子间的破坏性量子干涉不仅能使电子传输发生急剧变化,还能通过机械拉伸促进不对称电子能移,显著提高整流比。我们的工作提供了一种通过非共价超分子相互作用制造和调节不对称分子结构的通用方法,展示了高性能单分子整流器的潜力。