Suppr超能文献

石油烃污染土壤和地下水中Fe(III)的转化与归宿

Transformation and fate of Fe(III) in petroleum-hydrocarbon-contaminated soil and groundwater.

作者信息

Elikem Essouassi, Bulmer David, Bradshaw Kris, Hayatifar Ardalan, Lindsay Matthew B J, Siciliano Steven D, Peak Derek

机构信息

Department of Chemistry, University of Saskatchewan, 170 Thorvaldson Building, Saskatoon, S7N 5E2, SK, Canada.

Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, SK, Canada.

出版信息

Geochem Trans. 2025 Feb 7;26(1):1. doi: 10.1186/s12932-025-00097-z.

Abstract

In anoxic subsurface environments, low Fe(III) bioaccessibility greatly limits in situ biodegradation of petroleum hydrocarbons (PHCs). Ferric ammonium citrate is a soluble compound that has the potential to increase the bioaccessibility of Fe(III). However, in neutral to alkaline environments, Fe(III) hydrolysis can produce Fe(III) (oxyhydr)oxides that may subsequently transform or recrystallize to relatively stable and less bioaccessible phases. Accordingly, the objective of this study was to elucidate the transformation and fate of Fe(III) contributed by ferric ammonium citrate in a gasoline-contaminated subsurface environment that was undergoing in situ bioremediation. Ferric ammonium citrate, together with sodium tripolyphosphate, magnesium sulphate, and nitric acid, was continuously injected into the contaminated groundwater for about 22 weeks. Colloids in the groundwater (solid particles retained on a 0.45 m filter) and soil cores were collected from the site. Fe speciation in these samples was characterized using X-ray absorption near edge structure (XANES) and Fourier transform infrared (FTIR) spectroscopy. The groundwater colloids (GWCs) contained mostly octahedrally coordinated Fe(III), but the subsoils contained both octahedrally coordinated Fe(III) and Fe(II). The fraction of Fe(II) in the subsoils generally increased after about 22 weeks of continuous amendment injection. Ferric ammonium citrate did not persist in the PHC-contaminated subsurface: the Fe(III) it contained was transformed to solid phases. Fe(III)-organic-matter (Fe(III)-OM) complex/coprecipitate and sulfate green rust were the major phases present in the GWCs; akaganeite, chloride green rust, vivianite, ferrihydrite, Fe(III)-silicate, and magnetite were present as minor phases. The subsoils contained three major phases: Fe(III)-OM complex/coprecipitate, magnetite, and calcium ferric silicate. The presence of major Fe(II) phases in the subsoils strongly indicate that secondary Fe(III) phases (especially Fe(III)-OM complex/coprecipitate) served as terminal electron acceptors during the microbial degradation of PHCs in the contaminated subsurface.

摘要

在缺氧的地下环境中,低铁(III)生物可利用性极大地限制了石油烃(PHCs)的原位生物降解。柠檬酸铁铵是一种可溶性化合物,具有提高铁(III)生物可利用性的潜力。然而,在中性至碱性环境中,铁(III)水解可产生铁(III)(氢)氧化物,随后这些氧化物可能会转化或重结晶为相对稳定且生物可利用性较低的相。因此,本研究的目的是阐明在进行原位生物修复的汽油污染地下环境中,柠檬酸铁铵所贡献的铁(III)的转化和归宿。柠檬酸铁铵与三聚磷酸钠、硫酸镁和硝酸一起连续注入受污染的地下水中约22周。从该场地采集了地下水中的胶体(保留在0.45μm滤膜上的固体颗粒)和土壤岩芯。使用X射线吸收近边结构(XANES)和傅里叶变换红外(FTIR)光谱对这些样品中的铁形态进行了表征。地下水中的胶体(GWCs)主要含有八面体配位的铁(III),但下层土壤中同时含有八面体配位的铁(III)和铁(II)。在连续注入改良剂约22周后,下层土壤中铁(II)的比例通常会增加。柠檬酸铁铵在受PHC污染的地下环境中不会持续存在:其所含的铁(III)会转化为固相。铁(III)-有机物(Fe(III)-OM)络合物/共沉淀物和硫酸绿锈是GWCs中存在的主要相;赤铁矿、氯化绿锈、蓝铁矿、水铁矿、铁(III)-硅酸盐和磁铁矿作为次要相存在。下层土壤含有三个主要相:Fe(III)-OM络合物/共沉淀物、磁铁矿和硅酸钙铁。下层土壤中主要铁(II)相的存在强烈表明,次生铁(III)相(尤其是Fe(III)-OM络合物/共沉淀物)在受污染地下环境中PHCs的微生物降解过程中充当了终端电子受体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce31/11806840/399469517e48/12932_2025_97_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验