Talukder Md Alamin, Khalid Majdi, Sultana Nasrin
Department of Computer Science and Engineering, International University of Business Agriculture and Technology, Dhaka, Bangladesh.
Department of Computer Science and Artificial Intelligence, College of Computing, Umm Al-Qura University, 21955, Mecca, Saudi Arabia.
Sci Rep. 2025 Feb 7;15(1):4617. doi: 10.1038/s41598-025-87028-1.
Intrusion detection systems are essential for securing wireless sensor networks (WSNs) and Internet of Things (IoT) environments against various threats. This study presents a novel hybrid machine learning (ML) model that integrates KMeans-SMOTE (KMS) for data balancing and principal component analysis (PCA) for dimensionality reduction, evaluated using the WSN-DS and TON-IoT datasets. The model employs classifiers such as Decision Tree Classifier, Random Forest Classifier (RFC), and gradient boosting techniques like XGBoost (XGBC) to enhance detection accuracy and efficiency. The proposed hybrid (KMS + PCA + RFC) approach achieves remarkable performance, with an accuracy of 99.94% and an f1-score of 99.94% on the WSN-DS dataset. For the TON-IoT dataset, it achieves 99.97% accuracy and an f1-score of 99.97%, outperforming traditional SMOTE TomekLink and Generative Adversarial Network-based data balancing techniques. This hybrid approach addresses class imbalance and high-dimensionality challenges, providing scalable and robust intrusion detection. Complexity analysis reveals that the proposed model reduces training and prediction times, making it suitable for real-time applications.
入侵检测系统对于保护无线传感器网络(WSN)和物联网(IoT)环境免受各种威胁至关重要。本研究提出了一种新颖的混合机器学习(ML)模型,该模型集成了用于数据平衡的KMeans-SMOTE(KMS)和用于降维的主成分分析(PCA),并使用WSN-DS和TON-IoT数据集进行评估。该模型采用决策树分类器、随机森林分类器(RFC)等分类器以及XGBoost(XGBC)等梯度提升技术来提高检测准确性和效率。所提出的混合(KMS + PCA + RFC)方法取得了显著的性能,在WSN-DS数据集上的准确率为99.94%,F1分数为99.94%。对于TON-IoT数据集,它实现了99.97%的准确率和99.97%的F1分数,优于传统的SMOTE TomekLink和基于生成对抗网络的数据平衡技术。这种混合方法解决了类不平衡和高维挑战,提供了可扩展且强大的入侵检测。复杂性分析表明,所提出的模型减少了训练和预测时间,使其适用于实时应用。