Pandey Vivek Kumar, Prakash Shiv, Gupta Tarun Kumar, Sinha Priyanshu, Yang Tiansheng, Rathore Rajkumar Singh, Wang Lu, Tahir Sabeen, Bakhsh Sheikh Tahir
Department of Electronics and Communication, University of Allahabad, Prayagraj, India.
Department of Computer Science, Miranda House, University of Delhi, Delhi, India.
Sci Rep. 2025 May 28;15(1):18634. doi: 10.1038/s41598-025-03498-3.
Intrusion detection in Wireless Sensor Networks (WSNs) is an emerging area of research, given their extensive use in sensitive fields like military surveillance, healthcare, environmental monitoring, and smart cities. However, WSNs face several security challenges due to their limited computational capabilities and energy constraints. Their deployment in open, unattended environments makes them especially vulnerable to threats like eavesdropping, interference, and jamming. To address this problem, Random Forest (RF) is a popular machine learning model. The RF model can be tweaked because of its multiple hyperparameters. Tuning these parameters manually is tedious, as the combinations will be exponential. This work presents an enhanced intrusion detection approach by integrating Tabu Search (TS) optimization with a RF classifier. As a result, TS will help RF automatically search optimal hyperparameters and improve the generalization ability. This work integrates the pros of TS with RF. The model was tested on three different datasets, i.e., (a) the WSN-DS dataset, (b) CICIDS 2017, and (c) the CIC-IoT 2023 dataset, which shows better results on different metrics like precision, recall, F1-score, Cohen's Kappa, and ROC AUC. Detection of Blackhole and Gray Hole attacks also improved, demonstrating the effectiveness of combining metaheuristic optimization with ensemble learning for stronger WSN security.
无线传感器网络(WSN)中的入侵检测是一个新兴的研究领域,因为它们在军事监视、医疗保健、环境监测和智慧城市等敏感领域有广泛应用。然而,由于其有限的计算能力和能量限制,WSN面临着若干安全挑战。它们部署在开放、无人值守的环境中,这使得它们特别容易受到窃听、干扰和阻塞等威胁。为了解决这个问题,随机森林(RF)是一种流行的机器学习模型。由于RF模型有多个超参数,因此可以对其进行调整。手动调整这些参数很繁琐,因为参数组合数量呈指数级增长。这项工作提出了一种通过将禁忌搜索(TS)优化与RF分类器相结合的增强型入侵检测方法。因此,TS将帮助RF自动搜索最优超参数并提高泛化能力。这项工作整合了TS和RF的优点。该模型在三个不同的数据集上进行了测试,即(a)WSN-DS数据集,(b)CICIDS 2017,以及(c)CIC-IoT 2023数据集,在精度、召回率、F1分数、科恩卡帕系数和ROC曲线下面积等不同指标上显示出更好的结果。对黑洞和灰洞攻击的检测也有所改善,证明了将元启发式优化与集成学习相结合以增强WSN安全性的有效性。