Nikolau Ethan P, Whitehead Joseph F, Wagner Martin G, Scheuermann James R, Laeseke Paul F, Speidel Michael A
Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, USA.
Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, USA.
Med Phys. 2025 May;52(5):3228-3242. doi: 10.1002/mp.17661. Epub 2025 Feb 7.
Dual-energy (DE) x-ray image acquisition has the potential to provide material-specific angiographic images in the interventional suite. This approach can be implemented with novel detector technologies, such as dual-layer and photon-counting detectors. Alternatively, DE imaging can be implemented on existing systems using fast kV-switching. Currently, there are no commercially available DE options for interventional platforms.
This study reports on the development of a prototype fast kV-switching DE subtraction angiography system. In contrast to alternative approaches to DE imaging in the interventional suite, this prototype uses a clinically available interventional C-arm equipped with special x-ray tube control software. An automatic exposure control algorithm and technical features needed for such a system in the interventional setting are developed and validated in phantom studies.
Fast kV-switching was implemented on an interventional C-arm platform using software that enables frame-by-frame specification of x-ray tube techniques (e.g., tube voltage/kV, pulse width/ms, tube current/mA). A real-time image display was developed on a portable workstation to display DE subtraction images in real-time (nominal 15 frame/s). An empirical CNR-driven automatic exposure control (AEC) algorithm was created to guide DE tube technique selection (kV pair, ms pair, mA). The AEC model contained a look-up table which related DE tube technique parameters and air kerma to iodine CNR, which was measured in acrylic phantom models containing an iodine-equivalent reference object. For a given iodine CNR request, the AEC algorithm estimated patient thickness and then selected the DE tube technique expected to deliver the requested CNR at the minimum air kerma. The AEC algorithm was developed for DE imaging performed without and with the application of anti-correlated noise reduction (ACNR). Validation of the AEC model was performed by comparing the AEC-predicted iodine CNR values with directly measured values in a separate phantom study. Both dose efficiency (CNR/kerma) and maximum achievable iodine CNR (within tube technique constraints) were quantified. Finally, improvements in DE iodine CNR were quantified using a novel variant to the ACNR approach, which used machine-learning image denoising (ACNR-ML).
The prototype system provided a continuous display of DE subtraction images. For standard DE imaging, the AEC-predicted iodine CNR values agreed with directly measured values to within 3.5% ± 1.6% (mean ± standard deviation). When ACNR was applied, predicted iodine CNR agreed with measurement to within 2.1% ± 3.3%. AEC-generated DE techniques were typically (low/high energy): 63/125 kV, 10/3.2 ms, with varying mA values. When ACNR was applied, dose efficiency was increased by a factor of 9.37 ± 2.08 and maximum CNR was increased by a factor of 3.29 ± 0.21 relative to DE without denoising. Application of ACNR-ML yielded a greater increase in both the dose efficiency (16.11 ± 2.99) and maximum CNR (4.46 ± 0.31) compared to DE without denoising.
A prototype DE subtraction angiography system using fast kV-switching was implemented on a clinically available interventional C-arm platform without modification of system hardware. The technical features presented in this work include a real-time image display, noise-reduction strategies, and a CNR-driven AEC algorithm. This prototype system demonstrates the feasibility of 2D dual-energy imaging for image-guided interventions.
双能(DE)X射线图像采集有潜力在介入手术室中提供特定物质的血管造影图像。这种方法可以通过新型探测器技术来实现,如双层探测器和光子计数探测器。或者,DE成像可以在现有系统上使用快速千伏切换来实现。目前,介入平台没有商用的DE选项。
本研究报告了一种原型快速千伏切换DE减影血管造影系统的开发情况。与介入手术室中DE成像的其他方法不同,该原型使用配备特殊X射线管控制软件的临床可用介入C形臂。在体模研究中开发并验证了这种系统在介入环境中所需的自动曝光控制算法和技术特性。
在介入C形臂平台上使用能够逐帧指定X射线管技术(如管电压/kV、脉冲宽度/ms、管电流/mA)的软件实现快速千伏切换。在便携式工作站上开发了实时图像显示,以实时显示DE减影图像(标称15帧/秒)。创建了一种基于经验的对比度噪声比(CNR)驱动的自动曝光控制(AEC)算法,以指导DE管技术选择(千伏对、毫秒对、毫安)。AEC模型包含一个查找表,该表将DE管技术参数和空气比释动能与碘CNR相关联,碘CNR是在含有碘等效参考物体的丙烯酸体模模型中测量的。对于给定的碘CNR要求,AEC算法估计患者厚度,然后选择预期能在最低空气比释动能下提供所需CNR的DE管技术。AEC算法是为在不应用和应用反相关降噪(ACNR)的情况下进行的DE成像而开发的。通过在单独的体模研究中将AEC预测的碘CNR值与直接测量值进行比较,对AEC模型进行了验证。对剂量效率(CNR/比释动能)和最大可实现碘CNR(在管技术限制范围内)进行了量化。最后,使用ACNR方法的一种新型变体——机器学习图像去噪(ACNR-ML),对DE碘CNR的改善进行了量化。
原型系统提供了DE减影图像的连续显示。对于标准DE成像,AEC预测的碘CNR值与直接测量值的误差在3.5%±1.6%(平均值±标准差)以内。应用ACNR时,预测的碘CNR与测量值的误差在2.1%±3.3%以内。AEC生成的DE技术通常为(低/高能量):63/125 kV、10/3.2 ms,毫安值各不相同。应用ACNR时,相对于未去噪的DE,剂量效率提高了9.37±2.08倍,最大CNR提高了3.29±0.21倍。与未去噪的DE相比,应用ACNR-ML在剂量效率(16.11±2.99)和最大CNR(4.46±0.31)方面都有更大的提高。
在临床可用的介入C形臂平台上实现了一种使用快速千伏切换的原型DE减影血管造影系统,且未对系统硬件进行修改。本研究展示的技术特性包括实时图像显示、降噪策略和CNR驱动的AEC算法。该原型系统证明了二维双能成像用于图像引导介入的可行性。